MIDTERM THREE HOURS 100 MARKS

IF YOU USE ANY THEOREM/RESULT NOT PROVED IN THE CLASS, DO SUPPLY A COMPLETE PROOF

A. Prove or disprove the following statements with explanations.

60 Marks

Let χ be a non-trivial character mod q such that $L(1,\chi)=0$. Then $L(s,\chi)$ has no other real zero $\sigma>0$.

 \mathcal{L} Let G be a finite group and H be a subgroup. The restriction map from the dual of G to that of H is onto.

3. Let $D(s) = 1 + \sum_{n>2} \frac{a_n}{n^s}$ be a Dirichlet series with 0 as the abscissa of convergence. Then D(s) can have finitely many real zeros $\sigma > 1/2$.

 $4 \sum p^{-\sigma}$ is asymptotic to $\log(1/(\sigma-1))$ as $\sigma \to 1^+$.

5. Let f(s) be a non-constant entire function such that $f(s)\zeta(s)$ is a Dirichlet series for $\sigma > 1$ and with non-negative real coefficients. Suppose that $f(2/3) \ge 0$. Then f(1) > 0.

Let q > 3 and χ be a Dirichlet character mod q. Then $|\tau(\chi)| = \sqrt{q}$.

 \not Let p be an odd prime number. Then show the following:

There exists a unique real non-trivial character $\chi \mod p^4$.

Is it true that there exists an integer n > 1, such that p|n and the associated Gauss sum

$$\sum_{b \bmod p^4} \chi(b) \zeta_{p^2}^{bn}$$

is non-zero? Justify. (40 marks)