Exercise 5 Let $p \ge 2$ sevrus cliptic (3), $b \in \mathbb{F}_p$ and E the

Exercises are independent and can be tackled in any order

Exercice 1 Let E be a complex elliptic curve and \wp the associated Weierstraß function. Let z_1, z_2 be complex numbers. Show

For questions (ii) to (iv), one may assume that E is supersingular and

$$\left|egin{array}{ccccc} \wp(z_1) & \wp'(z_1) & 1 \ \wp(z_2) & \wp'(z_2) & 1 \ \wp(z_1+z_2) & -\wp'(z_1+z_2) & 1 \end{array}
ight|=0$$
 .

Exercise 2 Consider the smooth projective curve defined over \mathbb{Q} given by the cubic equation $:E = \{(x:y:z) \in \mathbb{P}_2 : x^3 + y^3 + z^3 = 0\}.$

(i) Show that E is a elliptic curve.

(ii) Find div $\left(\frac{z}{x+y}\right)$ and div $\left(\frac{y-x}{x+y}\right)$.

(iii) Find a Weierstraß normal form for (E, O) with O = (1 : -1 : 0).

(iv) Compute the modular invariant of E.

Exercise 3 For a projective curve C, we say that $P \in C$ is an inflection point of C if the tangent T_P of C at P intersects C with multiplicity ≥ 3 . We now assume that C = C(a, b) is a smooth Weierstraß cubic, $y^2 = x^3 + ax + b$. (i) Check that $p \in C$ is such that [3]p = O if and only if p is an inflection point of C.

(ii) Deduce that #C[3] = 9 (one can assume the Bézout theorem asserting two plane cubics intersect at 9 points counted with multiplicity). \P

Exercice 4 Let Λ be a complex lattice. Show that the following product converges and defines an entire complex function:

$$\sigma(z) = z \prod_{\omega \in \Lambda \setminus \{0\}} \left(1 - \frac{z}{\omega}\right) \exp\left[\frac{z}{\omega} + \frac{z^2}{2\omega^2}\right] .$$

Also prove that $\zeta(z) = \sigma'(z)/\sigma(z)$ (σ is a theta function associated to 3(0)).

Exercise 5 Let p > 2 a prime such that $p \equiv 2 \mod (3)$, $b \in \mathbb{F}_p$ and E the curve over \mathbb{F}_p) given by $Y^2 = X^3 + b$.

What condition b needs to meet for E to be elliptic? It is now assumed that E is elliptic.

For questions (ii) to (iv), one may assume that E is supersingular and $\#E(\mathbb{F}_p) = p+1$.

Let $n \geq 1$ coprime to p and assume $E[n] \subset E(\mathbb{F}_p)$. Show that $n \mid p-1$, $n^2 \mid p+1$, then $n \leq 2$.

(iii) Check $E[2] \subseteq E(\mathbb{F}_p)$.

(iv) Show $E(\mathbb{F}_p)$ is a cyclic group, what is its cardinality?

 (\mathbf{x}) Show that E is supersingular.

(vi) Show $\#E(\mathbb{F}_p) = p+1$.

Exercise 6 Let k be a field of characteristic $\neq 2$. Let \mathcal{C}_{λ} the family of cubics $\subset \mathbb{P}_2$ given by $y^2 = x(x-1)(x-\lambda), \ \lambda \in k$.

- (i) Compute the discriminant $\Delta(\lambda)$ of C_{λ} and its j-invariant (when $\Delta(\lambda) \neq 0$).
- (ii) When $\Delta(\lambda) \neq 0$, find E[2].