ALGEBRAIC GEOMETRY 1 FINAL EXAM

The max score is 60. The final question is a bonus question.

- (1) (20 pts) Let Y be an integral noetherian scheme and n be a positive integer. Define the following
 - a (geometric) vector bundle V over Y of rank n.
 - A locally free \mathcal{O}_{Y} -module \mathcal{F} of rank n.

Show that there is a natural bijection $\mathcal{F} \leftrightarrow V$ between locally free \mathcal{O}_Y modules of rank n and geometric vector bundles V over Y of rank n. Prove that this correspondence is functorial, i.e., a map between locally free \mathcal{O}_Y -modules corresponds to-a-map between their associated geometric vector bundles.

(2) (20 pts) Let $f: X \to Y$ be a map of schemes. Show that $\mathcal{L} \mapsto f^*\mathcal{L}$ induces a well defined homomorphism between their Picard groups

$$f^*: Pic(Y) \to Pic(X).$$

(3) (20 pts) Let X be a noetherian scheme and \mathcal{F} be a coherent sheaf on X. Consider the function

$$\varphi(x) := dim_{k(x)} \left(\mathcal{F}_x \otimes_{\mathcal{O}_x} k(x) \right),$$

where $k(x) := \mathcal{O}_x/\mathfrak{m}_x$ is the residue field at the point $x \in X$.

- Show that the function $\varphi(x)$ is upper semicontinuous, i.e., for any $n \in \mathbb{Z}_{>1}$, the set $\{x \in X \mid \varphi(x) \geq n\}$ is closed.
- Show that if X is reduced and φ is a constant function, then \mathcal{F} is locally free as an \mathcal{O}_X -module.
- (4) (BONUS: 20 pts) Let k be an algebraically closed field with $char(k) \neq 2$ and $X \subset \mathbb{P}^2_k$ be the non-singular cubic curve given by

$$y^2z = x^3 - xz^2.$$

Let $Cl^0(X)$ denote the subgroup of the divisor class group of X that is defined to be the kernel of the degree map

$$Cl(X) \xrightarrow{deg} \mathbb{Z}.$$

Let P_0 be the closed point (0:1:0) on X. Let X(k) be the set of all closed points of X. Define a map

$$\varphi: X(k) \to Cl^0(X)$$

sending P to the divisor class $P-P_0 \in Cl^0(X)$. Show that this is a bijection. Hint: Any line L will meet X in exactly three closed points P, Q, R counting multiplicities. On the other hand, any two lines in \mathbb{P}^2 are linearly equivalent.

In particular, L is linearly equivalent to $\{z=0\}$, whose divisor is $3P_0$. Therefore, $(P-P_0)+(Q-P_0)+(R-P_0)=0$ in $Cl^0(X)$.