DEQN

Instructor: Siddhi Pathak April 25, 2023

Final Exam

Total Marks: 80 Duration: 3 hours

1. (7 points) State whether the following statement is true or false. If true, provide a proof. If false, provide a counterexample. You can also use the fact: if $\psi \in C^1([\alpha, \beta])$ is such that $\psi'(t) \leq K\psi(t)$ for $t \in [\alpha, \beta]$ and $K \geq 0$, then $\psi(t) \leq \psi(\alpha) e^{K(t-\alpha)}$ for $t \in [\alpha, \beta]$.

Let $\mathcal{D} \subseteq \mathbb{R} \times \mathbb{R}$ be open and $(t_0, x_0) \in \mathcal{D}$ such that $[t_0 - \alpha, t_0 + \alpha] \times \overline{B(x_0, r)} \subseteq \mathcal{D}$ for some r > 0. Let $v_1, v_2 : \mathcal{D} \to \mathbb{R}$ be continuous vector fields on \mathcal{D} , bounded by M on $[t_0 - \alpha, t_0 + \alpha] \times \overline{B(x_0, r)}$. Set $b := \min(\alpha, r/M)$. For j = 1 and 2, let $\phi_j : [t_0 - b, t_0 + b] \to \mathbb{R}$ be any solution of the initial value problems $\dot{x} = v_j(t, x)$ and $x(t_0) = x_0$ (guaranteed to exist by Cauchy-Peano). Suppose that

$$v_1(t,x) \ge v_2(t,x)$$

for all $(t, x) \in \mathcal{D}$. Further assume that v_1 is Lipschitz continuous with respect to phase in \mathcal{D} , that is, there exists a constant L > 0 such that for all (t, x_1) and $(t, x_2) \in \mathcal{D}$,

$$|v_1(t, x_1) - v_1(t, x_2)| \le L|x_1 - x_2|.$$
 Then

$$\phi_1(t) \le \phi_2(t) \ \forall \ t_0 - b < t \le t_0,$$
 and $\phi_1(t) \ge \phi_2(t) \ \forall \ t_0 \le t < t_0 + b.$ (1)

2. (5 points) Show that there is a one parameter group of diffeomorphisms on $(-\pi/2, \pi/2)$ whose phase velocity is $v(x) = \cos(x)$.

2. (5 points) Solve the following initial value problem -

$$x^{(3)} - x^{(2)} + 4x^{(1)} - 4x = 0,$$
 $x(0) = 5, x'(0) = 8, x''(0) = -12.$

? \checkmark . (5 points) Let $(b_n)_{n\geq 0}$ be a sequence of rational numbers defined by the recurrence relation

$$b_{n+3} = b_{n+2} - 4b_{n+1} + 4b_n$$
 for $n \ge 0$, with $b_0 = 5$, $b_1 = 8$, $b_2 = -12$.

Find b_{2023} .

6. (23 points) State whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

(5 points) Let $A: \mathbb{R} \to M_n(\mathbb{R})$ be a continuous function, periodic with period $\omega > 0$. Then the IVP $\vec{x} = A(t)\vec{x}$ and $\vec{x}(0) = \vec{x}_0$ has a periodic solution.

 γ (8 points) There exists a function $w(x) \in C^1(\mathbb{R})$ such that the phase portrait of $\dot{x} = w(x)$ is same as that of $\dot{x} = x^2$, but the solutions of the IVP

$$\dot{x} = w(x) \qquad x(0) = x_0$$

exist for all time $t \in (-\infty, \infty)$, for all $x_0 \in \mathbb{R}$.

(5 points) The map $e^X: M_n(\mathbb{R}) \to GL_n^+(\mathbb{R})$ given by $A \mapsto e^A$ is surjective. Here

$$GL_n^+(\mathbb{R}) := \{ A \in GL_n(\mathbb{R}) : \det A > 0 \}.$$

Instructor: Siddhi Pathak April 25, 2023

Total Marks: 80 Duration: 3 hours

(6) (5 points) The map $e^X: M_n(\mathbb{C}) \to GL_n(\mathbb{C})$ given by $A \mapsto e^A$ is surjective. Here

$$GL_n(\mathbb{C}) := \{ A \in M_n(\mathbb{C}) : \det A \neq 0 \}.$$

8. (15 points) Consider the second order linear differential equation

$$\ddot{x} + p(t)\dot{x} + q(t)x = 0, (2)$$

where p(t) and q(t) are continuous functions on \mathbb{R} . Let f(t) and g(t) be two linearly independent solutions of (2). Let t_1 and $t_2 \in \mathbb{R}$ be consecutive zeros of g(t) (that is, $g(t_1) = g(t_2) = 0$ and $g(t) \neq 0$ on (t_1, t_2)). Then

- (a) (5 points) Prove that the function f(t) is non-zero at $t = t_1$ and $t = t_2$.
 (b) (10 points) Prove that there exists a $t_0 \in (t_1, t_2)$ such that $f(t_0) = 0$.
- 7. (20 points) For the following systems of differential equations, determine whether the origin is a stable, asymptotically stable or unstable equilibrium point. Justify your conclusion by naming/stating the relevant theorems from the course and proper computations.

$$\dot{x_1} = -x_1 + 4x_1x_2 + 2x_3 + x_4^2
\dot{x_2} = 2x_1^2 + 3x_2 - 4x_3 - 2x_4
\dot{x_3} = x_1x_2 + 3x_1x_2x_3 - x_3 - 2x_4
\dot{x_4} = 2x_1x_4 + 2x_3 - x_4$$

$$\begin{aligned}
 \dot{x}_1 &= 3x_1 \\
 \dot{x}_2 &= x_1x_3 - 2x_3 \\
 \dot{x}_3 &= 2x_2 - x_1x_2
 \end{aligned}$$

8. (BONUS Problem - 20 points) In Q.1, instead of the Lipschitz condition, assume that the IVP's $\dot{x}=v_1(t,x),\,x(t_0)=x_0$ and $\dot{x}=v_2(t,x),\,x(t_0)=x_0$ have unique solutions in $[t_0-b,t_0+b]$ for all $(t_0, x_0) \in \mathcal{D}$. Then does (1) hold? If yes, give a proof. If no, give a counterexample.