Complex Analysis Mid-semester exam 23/04/23, 9:30am-12:30pm

You may use your class notes and textbook. No other sources are permitted. In a multi-part question, the result of one part may be used in a succeeding part even if you have not been able to derive it.

 \checkmark 1. (5+5=10 points) Compute the following line integrals.

(a)

$$\int_{|z|=1} \frac{e^z dz}{z}$$

(b)

$$\int_{|z|=2} \frac{dz}{z^2 + 1}$$

2.(5+5=10 points) Determine the values of z for which the following series are convergent.

(a)

$$\sum_{n=0}^{\infty} \left(\frac{z}{1+z}\right)^n \qquad \text{Approx}^{x}.$$

$$\sum_{n=0}^{\infty} \frac{z^n}{1+z^{2n}} \qquad \text{Approx}^{x}.$$

(45)

$$\sum_{n=0}^{\infty} \frac{z^n}{1+z^{2n}} \qquad \nearrow \rho \rho^m \delta^{n}$$

(10 points) Map the open region between |z|=1 and $|z-\frac{1}{2}|=\frac{1}{2}$ conformally onto a half plane.

 \mathcal{A} . $(5+5=10 \ points)$ Let $\Omega \subseteq \mathbb{C}$ be a region and $\gamma \subset \Omega$ any closed curve. Suppose that f(z)is analytic on Ω .

(a) Show that

$$\int_{\gamma} \overline{f(z)} f'(z) dz$$

is purely imaginary.

If f(z) satisfies the inequality |f(z)-1|<1 on Ω , show that

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0.$$

 \mathcal{L} . (10 points) Let $\Omega \subset \mathbb{C}$ be an open region, and $\{f_n\}_{n=1}^{\infty}$ a sequence of holomorphic functions that converges uniformly to a function f in every compact subset of Ω . Show that f is holomorphic in Ω . Is the same result true of a sequence of \mathcal{C}^{∞} functions: if $\{f_n\}_{n=1}^{\infty}$ a sequence of smooth (real) functions that converges uniformly to a function f, then is f smooth as well?

(write property).

6. (10 points) Let f be analytic on the open unit disc D. Show that the diameter $d := \sup_{z,w \in D} |f(z) - f(w)|$ of the image of f satisfies:

$$2|f'(0)| \le d.$$

Show that equality holds iff f is linear, that is, $f(z) = a_0 + a_1 z$ for some $a_0, a_1 \in \mathbb{C}$. (Hint: $2f'(0) = \frac{1}{2\pi i} \int_{|z|=\rho} \frac{f(z)-f(-z)}{z^2} dz$ for any $\rho < 1$).

7. Let $\xi \in \mathbb{R}_{\geq 0}$ be a constant. Show that

$$\int_{-\infty}^{\infty} e^{-\pi x^2} e^{-2\pi i \xi} dx = e^{-\pi \xi^2}$$

in the following steps. For $z \in \mathbb{C}$, let $f(z) = e^{-\pi z^2}$; for R > 0, let γ_R be the counterclockwise oriented rectangle in the plane with vertices -R, R, $R + i\xi$ and $R - i\xi$. Then,

$$\int_{\gamma_R} f dz = \int_1^1 f dz + \int_2^1 f dz + \int_3^2 f dz + \int_4^2 f dz,$$

where \int_1 is the integral along the path from -R to R, \int_2 that from R to $R+i\xi$, and so on.

Show that $\lim_{R\to\infty} \int_2 f dz = 0$. Similarly, $\lim_{R\to\infty} \int_4 f dz = 0$.

(b) Show that $\int_3 f dz = -e^{\pi \xi^2} \int_{-R}^R e^{-\pi x^2} e^{-2\pi i \xi} dx$.

Assume that $\int_{-\infty}^{\infty} e^{-\pi x^2} dx = 1$. Complete the calculation using Cauchy's Theorem or otherwise.

The same calculation works for $\xi < 0$ too.