CANA Final Exam

09:30-12:30, 24 April, 2023

You may use your class notes or the textbook during the exam; no other sources are permitted. When attempting a multi-part problem, you may assume the result of one part in a subsequent part without deriving it. Each problem is worth 10 points.

1. Compute the following integral by the method of residues (or otherwise):

$$\int_0^\infty \frac{\log(1+x^2)}{x^{1+\alpha}} dx, \text{ where } 0 < \alpha < 2.$$

- \mathcal{Z} . Let $\{f_n\}$ be a sequence of analytic function defined on a region Ω . Suppose that $\{f_n\}$ converges to a function f(z), uniformly on every compact subset of Ω . If the $f_n(z)$ have at most m zeros in Ω , show that f(z) is either identically zero or has at most m zeros.
- 2. Prove that any entire function f that is also injective must be of the form f(z) = az + b, with $a, b \in \mathbb{C}$, $a \neq 0$. (Hint: Recall the theorem of Weierstrass that an analytic function comes arbitrarily close to any complex value in every neighbourhood of an essential singularity. Apply this to f(1/z).)
- Let f(z) be an analytic function on the open unit disc D such that that |f(z)| < 1 for all $z \in D$. Suppose that there exist two distinct points $a, b \in D$ that are fixed by f, that is, f(a) = a, f(b) = b. Show that f(z) = z for all $z \in D$ as follows:
 - (x) Let be the linear fractional transformation

$$\phi_{\alpha}(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}.$$

Show that if $\alpha \in D$, then ϕ_{α} maps D onto itself bijectively.

(b) Apply Schwarz's Lemma to $\phi_a \circ f \circ \phi_{-a}$ and conclude.

. Evaluate the integral

$$\int_{\gamma} e^{e^{1/z}} dz$$

where γ is the circle of radius 2 centred at the origin. (Hint: Series expansions for the exponential function.)

6. Let $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ be analytic with a pole of order 1 at 0. If $f(z) \in \mathbb{R}$ for all |z| = 1, show that for some nonzero $\alpha \in \mathbb{C}$, and $\beta \in \mathbb{R}$,

$$f(z) = \alpha z + \overline{\alpha} \frac{1}{z} + \beta, \quad \forall z \neq 0.$$

(Hint: Determine the coefficients of the series expansion of f.)

7. Show that the following series defines a meromorphic function on \mathbb{C} , and determine the set of poles and their orders.

$$f(z) = \sum_{n=0}^{\infty} \frac{\sin(nz)}{n!(z^2 + n^2)}.$$