CMI Algebra IV Endsem 09:30-12:30, Saturday, 22 April 2023

Write clearly at the start of the answer book: Algebra 4 Endsem, your name and roll number. Number the pages. Justify your answers, but keep them short; make sure you have time to deal with the more serious questions.

Maximum Marks 60/65

(1) [4] Consider the following 2×2 matrix

$$T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

- (a) Consider its action on \mathbb{R}^2 . What is the minimal polynomial? What is the characteristic polynomial? Is there a cyclic vector?
- (b) Consider its action on \mathbb{C}^2 . What is the minimal polynomial? What is the characteristic polynomial? Is there a cyclic vector?
- (2) [2] A finite domain is a field. (commutative)
- (3) [3] Let p be an odd prime, and $q = p^n$. Prove that exactly half the elements of \mathbb{F}_q^* are squares. Prove that, on the other hand, every element of \mathbb{F}_{2^n} is a square.
- (4) [8] Find the irreducible (monic) polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} . You will find that this has integral coefficients. Show that this polynomial is reducible modulo p for every prime p.
- (5) [3+3] (a) Prove that $f, g \in K[t]$ are relatively prime iff they have no common zeroes in any extension L of K. (b) Let f be a nonconstant polynomial in K[t]. Prove that f and f' are coprime in K[t] iff f has no multiple roots in any extension L.
- (6) [2] Let f be a nonconstant polynomial in K[t] and suppose that L has $deg\ f$ distinct roots in L. Prove that if \tilde{L} is another extension in which f splits into linear factors:

$$f(t) = c \prod_{i} (t - \tilde{\alpha}_i) \in \tilde{L}[t]$$

Then the roots $\tilde{\alpha}_i$ also have multiplicity one.

- [4] Let K/\mathbb{Q} be a degree 4 extension such that it has no intermediate fields. Give an example of such an extension. Can K be Galois over \mathbb{Q} ?
 - (8) [12] Find the Galois groups of:
 - (a) $x^3 10$ over $\mathbb{Q}(\sqrt{2})$.
 - (b) $x^4 + 2$ over \mathbb{F}_3 .
 - [4] Let E/F be a finite Galois extension of fields of characteristic zero. Prove that there exists a primitive element.
 - (10) [4] Prove that if L/K is a finite (not necessarily separable!) extension, then |Aut(L/K)| divides [L:K].
 - (11) [16] For an integer $n \ge 3$ consider the cyclotomic extension $\mathbb{Q}(\mu_n)/\mathbb{Q}$.
 - (a) Prove that any Galois transformation of $\mathbb{Q}(\mu_n)/\mathbb{Q}$ permutes the primitive n^{th} roots of unity. Give an example of a permutation of the set of primitive n^{th} roots which is *not* implemented by a Galois transformation of $\mathbb{Q}(\mu_n)/\mathbb{Q}$.
 - (b) Prove that every intermediate field $\mathbb{Q}(\mu_n)/F/\mathbb{Q}$ is Galois over \mathbb{Q} .

From now on let n = p, an odd prime.

- (c) How many intermediate fields $\mathbb{Q}(\mu_p)/F/\mathbb{Q}$ exist?
- (d) Calculate the trace and norm of ξ_p where ξ_p is a nontrivial p^{th} root.
- (e) Prove the existence of a normal basis of $\mathbb{Q}(\mu_p)$.