Notation:

Unless otherwise stated, the following is the default notation.

 R, S, A, B, \cdots : commutative rings

 $I, J, \mathfrak{a}, \mathfrak{b}, \mathfrak{p}, \mathfrak{q}$: ideals.

 k, ℓ : fields

 M, N, \cdots : modules.

Date and Time : 2022-Sep-25 14:15-17:15

Answer all the questions

Total marks: 165

Contribution towards final grade: (your marks)/5 or 30 whichever is lower.

- 1. True / False. Give sufficient justification for your answers.
 - (5 points) If R is a noetherian ring with $|\operatorname{Spec} R| < \infty$, then R is artinian.
- - $\{x\} \otimes_{\mathbb{K}} \mathbb{K}[x] \otimes_{\mathbb{K}} \mathbb{K}[x] \simeq \mathbb{K}[x,y].$
- ? 2. (10 points) Let $R = \mathbb{Q}[u, v, x, y]$ and I = (ux, vy, uy + vx). Determine Ass(R/I).
- 3. Let $\phi: \mathbb{C}[x,y] \to \mathbb{C}[s,t], x \mapsto s^2, y \mapsto st$. Let $\psi: \mathbb{C}^2 \to \mathbb{C}^2$ be the corresponding map. Prove or disprove the following statements.
 - (a) (5 points) ψ is surjective.
 - (b) (5 points) $\text{Im}(\psi)$ is dense in the Zariski topology on \mathbb{C}^2 .
 - (c) (5 points) There exist $p \in \text{Im}(\psi)$ such that $\psi^{-1}(p)$ is a finite set.
 - (d) 5 points) There exist $p \in \text{Im}(\psi)$ such that $\psi^{-1}(p)$ is an infinite set.
 - 4. (a) (10 points) Let (R, \mathfrak{m}) be a local ring and M, N finitely generated non-zero R-modules. Show that $M \otimes_R N \neq 0$.
 - (b) (10 points) Let R be a ring and M, N finitely generated R-modules. Then $M \otimes_R N = 0$ if and only if $\operatorname{Supp}(M) \cap \operatorname{Supp}(N) = \emptyset$.

(Hint: $U^{-1}(M \otimes_R N) \simeq U^{-1}M \otimes_{U^{-1}R} U^{-1}N$ for each multiplicatively closed $U \subseteq R$.)

- 5. (z) (5 points) Show that if R is a noetherian reduced ring, then Min(R) = Ass(R).
 - (b) (5 points) Give an example of a non-reduced noetherian ring of dimension 1 for which Min(R) = Ass(R).
 - (c) (10 points) Show that a ring R is artinian and reduced if and only if it is a product of a finite collection of fields.
- Assume that R is noetherian. Let I be an R-ideal and $a \in R$. Let $I = J_1 \cap J_2 \cap \cdots \cap J_m$ be a minimal irredundant primary decomposition of I. Assume that $a \notin \sqrt{J_i}$ for all $1 \le i \le l$ and $a \in \sqrt{J_i}$ for all $l+1 \le i \le m$. Write $(I:a^{\infty}) = \bigcup_{e \ge 1} (I:a^e)$. This is called the *saturation* of I by a.
 - (5 points) There exists $e \ge 1$ such that $(I : a^{\infty}) = (I : a^e)$.
 - (b) (10 points) $(I:a^{\infty}) = (J_1:a^{\infty}) \cap (J_2:a^{\infty}) \cap \cdots \cap (J_m:a^{\infty})$
 - (c) (10 points)

$$J_i: a^{\infty} = \begin{cases} J_i, & 1 \le i \le l; \\ R, & r+1 \le i \le m. \end{cases}$$

(10 points) Determine $Ass(R/(I:a^{\infty}))$.

- 7 (10 points) Let $R \subseteq S$ be rings and $s \in S$. Say that s is *integral* over R if there exist r_1, \ldots, r_n such that $s^n + \sum_{i=1}^n r_i s^{n-i} = 0$. Let R be a UFD that is not a field and S its field of fractions. Show that no element of $S \setminus R$ is integral over R.
- 8. Say that an R-module M is simple if $M \neq 0$ and there does not exist a submodule N of M such that $0 \neq N \subseteq M$.
 - (5 points) Let M be a simple R-module. Show that there exists a maximal ideal m of R such that $M \simeq R/m$.
 - (10 points) Let M be a finitely generated R-module. Show that then there exists a submodule N such that M/N is simple.
 - (c) (10 points) Using the above step, prove the following: If J is the Jacobson radical of R and M is a non-zero finitely generated R-module, then $JM \neq M$.
- 9. (10 points) Let (R, \mathfrak{m}) be a noetherian local ring and M a finitely generated R-module. Assume that $\mathfrak{m} \not\in \mathrm{Ass}(R) \cup \mathrm{Ass}(M)$. Show that there exists $l \in \mathfrak{m} \setminus \mathfrak{m}^2$ that is a nzd both on R and on M.