CMI Calculus 2022 (MU2103) Midsem 09:30-12:30, Thursday, 29 September 2022

Write clearly at the start of the answer book: Calculus Midsem. Your name and roll number. Number the pages. You have to justify your steps. Credit for neatness and brevity.

When in doubt, try the mean-value theorem. As usual, I = [0, 1].

Part A: Maximum Marks $20/25 \pm 1^{1}$

(1) [3] Consider

 $T = \{(x, y, 0) | 0 < x < 1, \ 0 < y < 1, \ x \ and \ y \ rational\} \subset \mathbb{R}^3$

What is the boundary of T? Let χ_T denote the indicator function of T. Which are the points of continuity of χ_T ? What is $\chi_T((\frac{\sqrt{2}}{2}, \frac{1}{2}, 0))$?

(2) [3] Consider the function $h: \mathbb{R}^2 \to \mathbb{R}^1$, defined by

$$h(x,y) = \begin{cases} 0 & \text{if } r \le 1 \\ r-1 & \text{if } 1 < r \le 2 \\ 3-r & \text{if } 2 < r \le 3 \\ 0 & \text{if } 3 > r \end{cases}$$

where $r = \sqrt{x^2 + y^2}$ (positive square root). Draw a graph of h (as best as you can) as a surface in \mathbb{R}^3 . What is the support of h? Is this a function of compact support?

(3) [3] Let P_1 be the partition $\{[0,1/2],[1/2,1]\}$ of I and P_2 the partition $\{[0,1/3],[1/3,2/3],[2/3,1]\}$. Consider the two product partitions of the square $I \times I$

$$Q_1 = P_1 \times P_2$$
, and $Q_2 = P_2 \times P_1$

Find a common refinement Q of Q_1 and Q_2 . For the function f(x,y) = x + y, evaluate U(Q,f) - L(Q,f).

^{1±1} for neatness and brevity.

[4] Let R be a (closed) rectangle in R^2 . Prove that if f and g are two integrable functions in R, so is f + g, and

(i)

$$\int_{R} f + g = \int_{R} f + \int_{R} g$$

(5) [5] If $f: I \times I \to \mathbb{R}$ is C^1 , show that the function $\mathcal{I}_f: I \to \mathbb{R}$, defined by

$$\mathcal{I}_f(y) = \int_0^1 f(x,y) dx$$

is differentiable, and

$$\frac{d\mathcal{I}_f}{dy}(y) = \int_0^1 \frac{\partial f(x,y)}{\partial y} dx$$

- (6) [3] Consider the map $\vec{\gamma}: \mathbb{R}^2 \to \mathbb{R}^2$, given by $\vec{\gamma}(r,\theta) = (r\cos\theta, r\sin\theta)$
 - (a) Is $\vec{\gamma}$ a C^1 map?
 - Find $\tilde{U} \subset \mathbb{R}^2$ and $U \subset \mathbb{R}^2$ such that $\vec{\gamma}|_{\tilde{U}}$ is a C^1 diffeomorphism onto U and U is "as big as possible" (You don't have to make this precise, but do your best.)..
 - [4] Let $GL(2,\mathbb{R})$ ($\subset M(2,\mathbb{R})$) denote the set of invertible 2×2 matrices. Show that this is not connected. Let Inv be the map $GL(2,\mathbb{R}) \to GL(2,\mathbb{R})$ given by taking the inverse:

$$Inv(A) = A^{-1}$$

Show that derivative at $-I_2$ is

$$DInv(-I_2)[a] = -a, \ a \in M(2,\mathbb{R})$$

Here I_2 is the identity matrix, $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Recall that the derivative of Inv at any matrix A is a linear map $M(2,\mathbb{R}) \to M(2,\mathbb{R})$.

Part B: Maximum Marks $15/20 \pm 1^2$

(8) Let R be the closed rectangle $R = \{(x,y) | 0 \le x \le 1, 0 \le y \le 2\}$. Let $S \subset R \subset \mathbb{R}^2$ be the closed parallelogram

$$S = \{(x, y) | 0 \le x \le 1, \ x \le y \le x + 1\}$$

Let f(x,y) = y - x.

- (2) [4] Evaluate $\int_S f$. You can use any result proved in the course except change of variables.
- [6] Evaluate $\int_S f$ using a suitable change of variables and Fubini to reduce it to doing one-dimensional integrals.
- [6] Let f be a continuously differentiable (i.e., C^1) real-valued function on the open disc $D = \{(x,y) | x^2 + y^2 \le 1\} \subset \mathbb{R}^2$, and suppose that $f_x^2 + f_y^2 \le 1$ everywhere on D. For $\vec{v}_1, \vec{v}_2 \in D$ find a bound for $|f(\vec{v}_1) f(\vec{v}_2)|$ in terms of $||\vec{v}_1 \vec{v}_2||$, where for any vector $\vec{v} = (a,b)$, $||\vec{v}||^2 = a^2 + b^2$. Justify all steps. (Here $f_x = \frac{\partial f}{\partial x}$ etc.)
- (10) [1+3] For u, v > 0, let V(u, v) be the area of the rectangle $S(u, v) = \{(x, y) | |x| \le u, 0 \le y \le v\}.$

Compute the "mixed partial derivative"

$$\frac{\partial^2 V}{\partial u \partial v}(u,v)$$

Let f be a continuous function on \mathbb{R}^2 , and let F be defined by

$$F(u,v) = \int_{S(u,v)} f = \int_{|x| \le u, 0 \le y \le v} f(x,y) dx dy$$

Compute

$$\frac{\partial^2 F}{\partial u \partial v}(u,v)$$

in terms of f.

²±1 for neatness and brevity.