Note: x, y denote variables.

```
Y. Stat and prove Gauss Lemma. (5 marks)
```

2. Find the gcd d of $a_1 = 11 + 7i$ and $a_2 = 8 + i$ in $\mathbb{Z}[i]$. Is $(d) = (a_1) + (a_2)$? Explain.(5 marks)

- 2. Let R be a UFD with quotient field Q and f a primitive polynomial of positive degree in R[x]. Show that f is irreducible in R[x] if and only if f is irreducible in $\mathbb{Q}[x]$. (5 marks)
- 4. Let R be a PID show that every ideal I in R can be expressed as a finite intersection of maximal ideals which are uniquely determined up to order. (5 marks) $4 \ln \mathbb{Z}$ can't be written
- 5. (a) Let R be an integral domain.
 - Show that every prime is irreducible. Is the result true if we drop the assumption that R is an integral domain? (5 marks)
 - نند. Determine whether $x^2 + 3x + 2$ is irreducible in $\mathbb{Z}[[x]] := \{\sum_{n \geq 0} a_i x^i : a_i \in \mathbb{Z}\}$. (5 marks)
 - $\bigcap_{z \in \mathbb{Z}} (b)$ Let $R = \mathbb{C}[\overline{x}, \overline{y}, \overline{z}] = \mathbb{C}[x, y, z]/(x^3 yz)$. Prove or disprove: Is $(\overline{y}^2 \overline{xz})$ a prime element in R. (5 marks)
 - (c) Let $R = \mathbb{C}[\overline{x}, \overline{y}, \overline{z}] = \mathbb{C}[x, y, z]/(x^2 + y^2 + y)$. Prove or disprove: $\overline{y}^4 + \overline{x}^3$ is irreducible in R. (5 marks)
- 6. (a) Show that every PID is a UFD. (5 marks)
 - Let R be a PID, Q its quotient field and x a variable. Let $S = \{f(x) = a_0 + a_1x + \cdots + a_nx^n : a_0 \in R, a_1, \cdots, a_n, \in Q\}.$
 - i. Show that S a ring. (5 marks)
 - \sim 11. Is S an integral domain? (5 marks)
 - jif. Let $I = \{f(x) \in S | f(0) = 0\}$. Determine whether I is a prime ideal? Is it a maximal ideal. Explain. (5 marks)
 - iv. Is S a principal ideal domain? If yes, prove it. If not, give an example of an ideal in S which is not principal. (5 marks)
- 7. Let A, B be commutative rings with identity element. Let $\phi: A \to B$ be a ring homomorphism.
 - (a) Let \mathfrak{p} be an ideal in A. Is $\phi(\mathfrak{p})B$ a prime ideal in B. If yes prove. If no give an example. (5 marks)
 - (b) Let q be an ideal in B. Is $\phi^{-1}(q)$ a prime ideal in A. If yes prove. If no give an example. (5 marks)
 - (c) Let R be a PID.
 - i. Describe all the prime ideals in R[x]. Which of them are maximal. Explain how you derive your answer. (5 marks)
 - ii. Suppose I and J are prime ideals in R. Describe all the maximal ideals in R[x]/(IJ)R[x]. (5 marks)
- 8. Let $\phi: \mathbb{Z}[x] \to \mathbb{Z}/2\mathbb{Z}$ be the composition of $\phi = \psi \circ \pi$, where $\psi: \mathbb{Z}[x] \to \mathbb{Z}$ is the map $\psi(x) = -1$ and $\pi: \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ is the quotient map. Determine $\ker(\phi)$. (5 marks)
- 9. Let A be an integral domain, R = A[x,y] and S = R[x,y,x/y]. Let $I = (x^3,xy^5y^7)$ be an ideal in R and $\phi: R \to S$ be the inclusion map. Prove or disprove: $I^{ec} = I$ (5 marks)
- 10. Let R be an integral domain. Suppose R is not a field. Let U(R) denote the set of units in R. Show that $R \setminus \{U(R) \cup \{0\}\} \neq \emptyset$. Suppose that there exists no $y \in R \setminus \{U(R) \cup \{0\}\}$, such that for all $x \in R$, $y \mid (x r)$ for some $r \in \{U(R) \cup \{0\}\}$. Show that R is not a Euclidean domain. (5 marks)