End-Semester- Wednesday 23/11/2023, Total Marks = 90

- Let R be a non-zero ring (not necessarily commutative) with $1 \neq 0$.
 - (a) Show that maximal (left) ideals always exist. (5 marks)
 - Suppose that R is a PID and char(R) = p where p is a prime number. Suppose \mathfrak{m}_1 and \mathfrak{m}_2 be two maximal ideals in R[x]. Suppose $R[x]/\mathfrak{m}_1 \cong R[x]/\mathfrak{m}_2$. Prove or disprove: $\mathfrak{m}_1 \not = \mathfrak{m}_2$. (5 marks)
- Let $R_1 = \mathbb{Z}[\sqrt{3}]/(1+2\sqrt{3})$ and $R_2 = \mathbb{Z}/11\mathbb{Z}$ Determine whether $R_1 \cong R_2$. You need to explain the steps how you get the answer. (10 marks)
- Let $R = \mathbb{Z}[x]/(f)$, where $f = x^4 + 49x^3 27x^2 + 50x 2024$ and let I = (7). Find all prime ideals of R that contain I. (Explain) (10 marks)
- Let R be an integral domain and let Q(R) denote its quotent field.
 - Let R be a UFD. Let $a, b \in R$ with $b \neq 0$. Suppose $a/b \in Q(R)$ satisfies a monic polynomial over R. Show that $a/b \in R$. (10 marks)
 - Let $R = \mathbb{C}[t^3, t^4, t^5]$ and $S = \mathbb{C}[t]$. Is every element of S algebraic over R? Is R a UFD? (5 marks)
- Let K be a field of characteristic p. Consider the polynomial $x^{2p} yx^p + y \in K(y)[x]$.
 - (a) Show that f is irreducible over K(y). (5 marks)
 - Let K denote the splitting field of f (i.e. $f(x) = (x a_1) \cdots (x a_{2p})$ in K). Determine [L:K(y)]. (5 marks)
 - 6. Let $F \subseteq K$ be fields of characteristic 0. Suppose $a \in K$ and [F(a) : F] is odd. Show that $F(a) = F(a^2)$. (5) marks)
 - \checkmark 1. Let R be a UFD of characteristic 0 and let Q its quotient field. Let be f(x) be an irreducible polynomial in Q[x]. Determine the gcd of f(x) and f(x+1). Explain how you arrive at your answer. (5 marks)
- & Let $F = \mathbb{F}_2$. Explicitly describe all the irreducible factors of $f(x) = x^{16} x$ over F. Explain how do you arrive at the answer. (10 marks)
- Let p be a prime number and let $q = p^r$ for some integer r > 0. Let K be a field of order q.
 - (a) Show that the non-zero elements of K for a cyclic group of order q-1. (10 marks)
 - Show that the non-zero elements in $\mathbb{F}_3[x]/(x^2+1)$ form a cyclic group. What is the generator of the cyclic group? (5 marks)