CHENNAI MATHEMATICAL INSTITUE

Probability Theory

Final Examnation

Duration: 3hrs

Answer ALL questions in Part A and any three queestions in Part B. Give brief answers.

PART A

1. There are 5 red balls and 6 black balls. The balls are indistinguishable except for their colours. They have to be distributed among 8 boxes, subject to the constraint that no two balls of the *same* colour are allowed to occupy the same box. The boxes are numbered 1 to 8. Find the probability that boxes 1, 2, 3 receive two balls and the remaining boxes only one ball each.

 \mathcal{A} . In an experiment, n fair dice are rolled, where $n \geq 3$. Let A_{ij} , $1 \leq < j \leq n$, be the event that the ith and the jth roll yield the same number. Show that the collection of events $\mathcal{A} := \{A_{ij} \mid 1 \leq i < j \leq n\}$ is not independent, but that any two members of \mathcal{A} are independent.

In a game, N fair dice are rolled. The sum S of the numbers that show up on the dice is the score of the game. Suppose that N is a random number taking values in positive integers where $P(N = k) = (2/3)(1/3)^{k-1}$ for $k \ge 1$. (a) Find P(S = 4).

(b) Find P(N = 2|S = 4).

(a) Show that $\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$.

Find the value of c so that $f(x) = ce^x(1 + e^x)^{-4}, x \in \mathbb{R}$, is the density function of a random variable. Also find the corresponding distribution function.

Let X, Y be independent random variables each being uniformly distributed on [0, 1]. Let $U = \min\{X, Y\}$. Find the density function of U and also find E(U).

Give an example of a discrete random variable which has no mean.

Suppose that $0 < \lambda < 1$. Show that the function is $\lambda f + (1 - \lambda)g$ is the denisty function of a random variable if f, g are density functions of some random variables.

(c) Find examples of density functions f, g so that the product $h(x) = f(x).g(x) \ \forall x \in \mathbb{R}$ is not a density function.

(a) Find the moment generating function $M_X(t) = E(e^{tX})$ of the Poisson random variable X with parameter λ .

(b) Let X_1, \ldots, X_n be independent random variabales where X_j is Poisson with parameter

 λ_j , $1 \leq j \leq n$. Find the mean and variance of $Y = X_1 + \ldots + X_n$.

CHENNAI MATHEMATICAL INSTITUE

$$f_{X,Y}(x,y) = \begin{cases} 1/x, & 0 < y \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Find $f_X(x)$, $f_Y(y)$, and $f_{Y|X}(y|x)$.

Show that $\Gamma(1/2, 1/2)$ -distribution is the same as the distribution of X^2 where X has the standard normal distribution N(0,1).

PART B

11. (a) Determine the characteristic function $\phi_X(t)$ of the binomial random variable X = Bin(n, p). Find a random variable Y such that $\phi_Y(t) = |\phi_X(t)|^2$.

(b) Let n be a positive integer. Show that $\phi(t) = e^{-t^2/2} (1 + \cos t)^n / 2^n$ is the characteristic function of a random variable Z.

Suppose that X, Y are independent random variables with $\Gamma(\lambda, s), \Gamma(\lambda, t)$ -distributions respectively. Use characteristic functions to show that X + Y is a $\Gamma(\lambda, s + t)$ -random variable.

43. Let X and Y be independent exponential random variables with parameter 1. Find the joint density function of U = X + Y, V = X/(X + Y) and deduce that V is uniformly distributed on [0, 1].

Find the value of c so that $f_{X,Y}(x,y) = c \exp(-x^2 + xy - 8y^2), x,y \in \mathbb{R}$, is the joint density function of the random variables X,Y. Also compute the density function $f_{Y|X}(y|x)$ of Y|X=x. Determine the random variable E(Y|X).

=1 ten

AD - A