Algebra 2, Jan-May 2022, Final exam & ()) 3

1. This is a closed-book exam. Electronic devices are not allowed inside the room.

- 2. This exam is worth 160 marks. Contribution towards your final grade calculation: your marks \times 40/160.
- 3. Please provide justification for all your answers including the True/False questions.
- 4. You may use results from the lectures and the textbook that were proved in class, or were included in the exercises, unless solving the exercise is the content of a question in this exam.

Questions

1. Let $n \ge 2$ be an integer and $\sigma, \tau \in S_n$.

(5 marks) Show that if σ and τ are conjugates of each other, then their cycle decompositions have the same order, i.e., for each k, the number of k-cycles in their cycle decompositions is the same for both σ and τ .

(10 marks) Prove the converse.

(6) (5 marks) Determine the class equation of S_4 .

(10 marks) Show that if $n \ge 4$, A_n is generated by 3-cycles.

(e) (5 marks) Determine whether the 3-cycles form a single conjugacy class in A_4 .

2. (5 marks) Let $A \in GL_4(\mathbb{C})$ be an element of finite order, with $A \neq I_4$. Prove or disprove the following statement: I is the only eigenvalue of A.

 \mathcal{S} . (10 marks) Construct an orthonormal basis of \mathbb{R}^4 starting with

$$v_1 := rac{1}{2} egin{bmatrix} 1 \ 1 \ 1 \ -1 \end{bmatrix}.$$

Below we give another proof of Sylow's first theorem. Let G be a finite group and p a prime number that divides |G|. Assume by induction that the theorem holds for G' for all groups G' with |G'| < |G|.

(a) (5 marks) State Sylow's first theorem.

(5 marks) Show that if G has a subgroup H such that [G:H] is not divisible by p, the theorem holds for G.

(15 marks) Hence assume that for every subgroup H of G, [G:H] is divisible by p. Let Z be the centre of G. Each of the parts below is worth 5 marks.

Y. Show that p divides |Z|.

1. Show that G has a normal subgroup H of order p.

/. Show that the theorem holds for G. (Hint: Consider G/H.)

5. Let G be a group and F a field. A (finite-dimensional) representation of G over F is a (finite-dimensional) F-vector-space V together with a group homomorphism $G \to GL(V)$. (I.e., there is an action of G on V, which is as invertible linear transformations, not merely as bijective functions.) Let V be a representation of G. By V^G , we mean the set

$$\{v \in V \mid gv = v \text{ for all } g \in G\}.$$

- (5 marks) Show that V^G is a subspace of V.
- (6) (5 marks) Let $G := \mathbb{Z}/2\mathbb{Z}$ act on $V := \mathbb{C}^2$ with $\overline{1}v = -v$. Determine V^G .
- (c) (10 marks) Let $G := \mathbb{Z}/2\mathbb{Z}$ act on $V := \mathbb{C}^2$ with $\overline{l}e_1 = e_2$ and $\overline{l}e_2 = e_1$, where e_1 , e_2 is the standard basis for \mathbb{C}^2 . Determine V^G .
- (15 marks) Show that V/V^G is a representation of G.
- 6. (20 marks) Let H be a subgroup of S_n . Show that the following are equivalent:
 - 1. $\{(1,2), (1,2,\cdots,n)\}\subseteq H$.
 - 2. $(k, k+1) \in H$ for each $1 \le k \le n-1$.
 - 3. Every transposition of S_n is in H.
 - 4. $H = S_n$.
- (10 marks) Let V be a five-dimensional complex vector space, and let T be a linear operator on V with characteristic polynomial $(t-\lambda)^5$. Suppose that the rank of the operator $T-\lambda I_5$ is 2. Determine the possible Jordan forms for T.
- 8. (10 marks) Determine all the groups of order 6 up to isomorphism. 2/67, Ω Ω Ω Ω
- 6. (10 marks) The characteristic polynomial of the complex matrix

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & ? & ? \end{bmatrix}$$

is divisible by t. Determine the missing entries (not necessarily uniquely determined). (You must show how you arrive at the answer, not just give the answer.)