
National Undergraduate Programme in Mathematical Sciences

National Graduate Programme in Computer Science

Functional Programming in Haskell

Final Examination, Semester I, September 2021–December 2021

Date : March 25, 2021
Time : 0930 – 1230

Marks : 100
Weightage : 40%

• This paper has two parts. Each Part A question is worth 5 marks, and each Part B question is worth
20 marks.

• Submit your answer as a TXT file titled <usernameF-final.txt on Moodle.

• If for some reason you cannot submit a TXT file, scan your handwritten answers and submit a PDF.

• Write your name and CMI id on the first two lines of the file.

• You can use any of the commonly used library functions in your solutions.

Part A

1. How many values belong to the type Exp defined below?

data Dig = Zero | One | Two | Three | Four | Five
| Six | Seven | Eight | Nine deriving (Eq, Ord)

data Op = Add | Sub | Mul | Div deriving (Eq, Ord)
type Exp = (Op, Dig, Dig)

2. For how many inputs e F: Exp does goodExp e return True?

goodExp F: Exp F> Bool
goodExp (op, d1, d2) = op F= Sub F| (d1 F= Four F& d2 F= Six)

3. Is 20 an element of the following list?

zipWith (*) [2,4F.] [6,4F.]

4. Consider the following two IO actions.

1

act m = do
b F- readLn F: IO Bool
return (m F| b)

main = do
inp F- readLn F: IO Bool
list F- replicateM 5 (act inp)
if (and list) then return inp else return (not inp)

What are the types of act and main?

5. How many lines of user input are read when you run main?

6. Given below are two expressions f and g. Which takes more steps and why?

f = foldl (F+) [] ["abc", "def", "ghi", "jkl"]
g = foldr (F+) [] ["abc", "def", "ghi", "jkl"]

7. What is the result of foldr (\x (y:ys) F> y:x+y:ys) [0] [0F.9]?

8. Supply a function f such that foldl f [] F= reverse.

Part B

1. (a) Write a function myReplicate F: Int F> a F> [a] such that myReplicate i x cre-
ates a list with i occurrences of x if i > 0, and creates [] otherwise.

(b) Write a program countFalse F: [Bool] F> Int that counts the number of occurrence
of False in a list ls F: [Bool].

(c) Using countFalse and myReplicate, define sortBools F: [Bool] F> [Bool] which
sorts a list ls F: [Bool] in time proportional to length ls.

2. We defined binary trees in class, where each node has two children (either or both of which
can be Nil). But we can have more general trees, where each node has any finite number of
children. In this case the children of a node are represented as a list (the empty list indicating
that there are no children). The Haskell definitions are given below:

data BTree = Nil | BNode Int BTree BTree
data Tree = Node Int [Tree]

There is a way to encode an arbitrary tree as a binary tree. Here the left child (of the binary tree)
denotes the leftmost child of the original tree, while the right child denotes the next sibling of
the node. Below, tree1 is a general tree, and tree2 is its binary tree encoding.

2

tree1 F: Tree
tree1 = Node 1 [Node 2 [], Node 3 [Node 4 [], Node 5 [], Node 6[]],

Node 7 [Node 8 []]]

tree2 F: BTree
tree2 = BNode 1 (BNode 2 Nil (BNode 3 (BNode 4 Nil (BNode 5 Nil (BNode

6 Nil Nil))) (BNode 7 (BNode 8 Nil Nil) Nil))) Nil

Define a function encode F: Tree F> BTree that converts a general tree to its binary tree
representation.

3. Define a function decode F: BTree F> Tree that converts a binary tree to the general tree it
encodes. (We assume that the binary tree is not Nil and that its root has no right subtree.)

3

