CMI Linear Algebra 2021 Endsem

14:00-17:00, Saturday 11 December 2021

Important instructions: This is an open-book exam. Do not consult each other.

- Write clearly at the start of the answer book: Algebra 1 Endsem Your name and roll number.
- (2) Number the pages. Submit a pdf version. Name the file: YourFullName_RollNumber_LinearAlgebraEndsem.pdf
- (3) Send by email to: RamadasExamCmi@gmail.com
- (4) Answers to arrive by 17:30. Late submissions will be ignored.

Maximum Marks 40/42

(1) [3+1] Let $n \ge 1$. Suppose given n column vectors $\vec{v}_1, \ldots, \vec{v}_n$ of length n. Prove that they form a basis for $\mathcal{M}_{n\times 1}$ iff

$$det \left[\vec{v}_1 \dots \vec{v}_n \right] \neq 0$$

Here $[\vec{v}_1 \dots \vec{v}_n]$ denotes the $n \times n$ matrix with j^{th} column equal to \vec{v}_j .

Formulate and prove an analogous result for row vectors $\vec{w}_1, \ldots, \vec{w}_n$.

(2) [3] Let N be a real 2×2 nilpotent matrix. If N is nonzero, prove that there is an invertible 2×2 matrix T such that

$$TNT^{-1} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

(3) Let C be the matrix:

$$\left[\begin{array}{cccccccccc} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right]$$

(a) [1] Describe the image of C.

(b) [2] Describe the kernel of C.

(4) [2] Let A and B be 100×100 matrices, with

	[1]	$\begin{array}{c} 0 \\ 2 \end{array}$			0	0
<i>A</i> =	0	2	•		0	0
		•	•	•		•
		•	•	•	•	•
	$\begin{array}{c} 0\\ 0\end{array}$	0			99	0
	0	0			99 0	100

If B is nilpotent and AB = BA, what can you say about B?

(5) Let I_2 be the 2×2 identity matrix. Let A be a real 2×2 matrix such that

- A is nonzero,
- A is not the identity matrix,
- $A^2 = A$
- (a) [2] Is there an invertible matrix T such that $TA = I_2T$?
- (b) [2] is there a non-zero matrix T such that $TA = I_2T$?
- (6) [2] Consider the matrix

$$A = \left[\begin{array}{rrr} 1 & 1 \\ 0 & 1 \end{array} \right]$$

Prove or disprove: if $p_B(t) = t^2 - 2t + 1$, then B is similar to A.

(7) [3] If $\hat{N}: V \to V$ is a nilpotent linear map, with V finite-dimensional, prove that $I_V + \hat{N}$ is invertible.

(8) [3] Let V be an real finite-dimensional inner product space. Recall that an orthogonal transformation $\hat{O}: V \to V$ is one that preserves inner products. Prove that given such an \hat{O} and a subspace $W \subset V$ invariant under \hat{O} , the orthogonal complement W^{\perp} of W is also invariant under \hat{O} .

(9) [3] Fill in the blanks in the following (real) 2×2 matrix O so that it becomes orthogonal.

$$\left[\begin{array}{cc} \frac{1}{\sqrt{2}} & -\\ \frac{1}{\sqrt{2}} & -\end{array}\right]$$

How many ways can you do this? What if you demand that det O = 1 as well?

(10) [5] For any integer N > 0, let V_N be the space of real polynomials of degree $\leq N$. Clearly

$$(P,Q) = \int_{-1}^{1} P(x)Q(x)dx$$

 $\mathbf{2}$

defines an inner product on V_N . The Gram-Schmidt process applied to the basis

$$1, x, x^2, x^3, \ldots, x^N$$

yields a sequence of polynomials $(p_0, p_1, p_2, \ldots, p_N)$ with the property that

$$\int_{-1}^{1} p_i(x) p_j(x) dx = \delta_{i,j}$$

Compute p_0, p_1, p_2, p_3 assuming $N \ge 3$. (Note that the actual value of N does not matter!)

Prove that p_{2m} is even and p_{2m+1} odd under $x \mapsto -x$. That is,

$$p_{2m}(-x) = p_{2m}(x) \quad p_{2m+1}(-x) = -p_{2m+1}(x)$$

(11) Let A be the matrix

$$\left[\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

- (a) [4] Find an orthogonal matrix S such det S = 1 and $S^{tr}AS$ is diagonal. Show your computations.
- (b) [3] Find an orthogonal matrix T with det T = -1 such that TA = AT.
- (c) [3] How many such T exist?