Analysis II Final exam 22/07/21, 10:00-14:00

You may use your class notes and textbook during the exam. No other sources are permitted. In a multi-part question, the result of one part may be used in a succeeding part even if you have not been able to derive it.

- 1. $(5 \times 4 = 20 \text{ points})$ True or false? Either give a proof or a counterexample.
 - (a) Let $C \subset \mathbb{R}^1$ denote the Cantor set, and let \mathcal{D} be the subset $(\{0\} \times C) \cup (\{1\} \times C)$ of \mathbb{R}^2 with the induced metric. Then, C is homeomorphic to \mathcal{D} .
 - (b) Let B be an open ball in \mathbb{R}^2 , and $f : B \to \mathbb{R}^1$ a continuous function all of whose directional derivatives are defined and *vanishing* on B. Then, f is constant even if it is not differentiable.
 - (c) An uncountable subset of \mathbb{R}^1 must have a limit point.
 - (d) Let function $f: I \to \mathbb{R}^1$ be a function, where $I \subset \mathbb{R}^1$ is an interval. If the graph¹ of f is connected, then f is continuous.
- 2. (4+3+3=10 points) Define f is \mathbb{R}^2 by

$$f(x,y) = 2x^3 + 6xy^2 - 3x^2 + 3y^2.$$

- (a) Find the points where the gradient of f vanishes. Which of these are local maxima and which are local minima?
- (b) Let $S = \{(x, y) : f(x, y) = 0\}$. Find those points of S which have no neighbourhoods in which the equation f(x, y) = 0 can be solved for one variable in terms of the other.
- (c) Show that there exists a differentiable function g defined a neighbourhood of 0 such that $g(0) = \frac{3}{2}$ and f(g(y), y) = 0. Find g'(0).
- 3. (10 points) If a function $f: X \to Y$ is a function between metric spaces, the graph of f is the set of points (x, f(x)) in $X \times Y$, for $x \in X$.

If X is a compact subset of \mathbb{R}^1 and f is a real-valued function on X, show that f is continuous on X if and only if the graph of f is compact in \mathbb{R}^2 .

- 4. (10+10=20 points) Let C[0,1] denote the set of continuous functions on the interval [0,1].
 - (a) Show that the function $d_1(f,g) := \int_0^1 |f(t) g(t)| dt$ defines as metric on $\mathcal{C}[0,1]$. Is the metric space $(\mathcal{C}[0,1], d_1)$ complete?
 - (b) Define $\phi : \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ by

$$\phi(f)(x) = \int_0^x t(t+f(t))dt.$$

Show that ϕ is a contraction mapping for the usual sup metric. Use ϕ to find an approximate solution y to the differential equation

$$\frac{dy}{dx} = x(x+y), \qquad y(0) = 0, \qquad (0 \le x \le 1),$$

accurate to one decimal place. Start with the approximation $y_0 = 0$.

5. (7+3=10 points) Let a, b, c, p, q be real nonnegative constants with $p, q \ge 1, \frac{1}{p} + \frac{1}{q} = 1$.

 $^{^1 \}mathrm{See}$ problem 3.

- (a) Maximize the function f(x, y) = ax + by subject to the constraints $g(x, y) = x^q + y^q = c$, $x, y \ge 0$.
- (b) Deduce Hölder's inequality:

$$ax + by \le (a^p + b^p)^{\frac{1}{p}} \times (x^q + y^q)^{\frac{1}{q}}$$

- 6. (1+3+3+3=10 points) Let $B = \{x \in \mathbb{R}^n : |x| < 1\}$ be the open unit ball, and $f : B \to \mathbb{R}^n$ a C^1 -function, which extends to a *continuous* function on the closed unit ball \overline{B} . Suppose that the Jacobian of f is positive on B. Suppose further that f(x) = x on the boundary of B, that is, whenever |x| = 1.
 - (a) Show that if X is an open subset of B, then f(X) is open in \mathbb{R}^n .
 - (b) Show that $f(\overline{B})$ is contained in \overline{B} (where is the latter \overline{B} is a subset of the range).
 - (c) Show that f(B) = B.
 - (d) Show that if $y \in f(B)$, then $f^{-1}(y)$ is a finite subset of B.