
National Undergraduate Programme inMathematical Sciences
National Graduate Programme in Computer Science

Functional Programming in Haskell
Final Examination, Semester I, December 2020–March 2021

Date : March 25, 2021
Time : 0930 – 1230

Marks : 50
Weightage : 50%

• This paper has two parts. Each Part A question is worth 2.5 marks, and each Part B question is worth 6
marks.

• Submit your answer as a TXT file titled <username>-final.txt onMoodle.

• Write your name and CMI id on the first two lines of the file.

• You can use any of the commonly used library functions in your solutions.

Part A

1. List all values of the type Maybe (Maybe Bool)?

2. Howmany values belong to the type Test defined below?

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

data Test = History Day | Science Day Day

3. What is the maximum value in the type (Func, Bool), where Func is defined as follows:

data Func = Foo | Bar | Loop | Gloop

deriving (Eq, Ord)

4. Find a function f :: [Int] -> [Int] such that the following holds:

f [22, 23, 15, 4, 16, 2, 3, 28] = [2, 3, 4, 15]

5. Consider the following two IO actions.

1

act m = do

b <- readLn :: IO Bool

return (even m == b)

main = do

inp <- getLine

x <- act (length inp)

if x then return inp else return (inp++inp)

What is the type of main?

6. Howmany lines of user input are read when you run main?

7. Given below are two expressions f and g. Which takes more steps and why?

f = foldl (++) [] ["abc", "def", "ghi", "jkl"]

g = foldr (++) [] ["abc", "def", "ghi", "jkl"]

8. What is the result of foldr (\x (y:ys) -> y:x+y:ys) [0] [0..9]?

Part B

1. How many times is the recursive call to f 0 made in the computation of f 4, given the fol-
lowing definition of f?

f 0 = v

f n = g n n where

g i j = if i == 0

then f (j-1)

else f (j-1) + g (i-1) j

In general, what is the value of f n? Justify your answer briefly.

2. (a) Write a function myReplicate :: Int -> a -> [a] such that myReplicate i x creates
a list with i occurrences of x if i > 0, and creates [] otherwise.

(b) Write a program countFalse :: [Bool] -> [Bool] that counts the number of occur-
rence of False in a list ls :: [Bool].

2

(c) Use countFalse and myReplicate to write a program sortBools :: [Bool] -> [Bool]

that sorts a list ls :: [Bool] in time proportional to length ls.

3. A dyadic numeral is a string of numbers of the form xn . . . x1 (n ¾ 0), where each xi � {1,2}. (Note
that the case when n = 0 represents the empty string.) Its value is given by

i=n∑
i=1

xi · 2i−1.

(Note that the value of the empty string is 0, since the sumof an empty sequence of numbers is
0, by convention.) Theadvantage ofdyadicnumerals overbinarynumbers (as you canverify at
leisure) is that each natural number has a unique dyadic representation. We represent dyadic
numerals as lists. The representations for 0 to 5 are [], [1], [2], [1,1], [1,2], and [2,1]
respectively.

Define a function value :: [Int] -> Int such that value ls gives the number represented
by the dyadic numeral given by ls. You should not use (!!) or (2^) in your definition.

4. Define the function dyadic :: Int -> [Int] such that dyadic n gives the dyadic represen-
tation of the natural number n.

5. Consider the following definition of a binary tree which stores values only at the leaves.

data BTree = Leaf Int | Fork BTree BTree

Suppose we want to compute the minimum andmaximum value of each subtree and store it
at the Fork. That leads us to the following definition of a decorated binary tree.

data DBTree = DLeaf Int | DFork DBTree (Int, Int) DBTree

The idea is that in DFork dtl (y,z) dtr, y is the minimum value among all the leaves of dtl
and dtr, whereas z is the maximum value among all the leaves of dtl and dtr.

Define a function decorate :: BTree -> DBTree that computes the decorated binary tree
corresponding to a binary tree.

3

