National Undergraduate Programme in Mathematical Sciences
National Graduate Programme in Computer Science

Functional Programming in Haskell
Mid-semester Examination, I Semester, 2019-2020

Date : September 25, 2019 Marks : 100
Time : 0930 - 1230 Weightage : 30%

This paper has three parts. Each Part A question is worth 4 marks, and each Part B
question is worth 6 marks. Part C is worth 50 marks. For Part A, provide answers in the
answer sheet, and write your option as well as the answer, like “(a) 225" or “(b) True”

Part A
1. What is the result of length $ filter (>= -10) [35,32..(-25)]7

(a) 14 (b) 15 (c) 16 (d) 17
2. What is the result of length $ takeWhile (>= 5) (reverse [33,31..4])7
» (a) 0 (b) & () 10 (d) 15
3. Which of the following is a possible type of the function foldl (++)7

(a) [a]l => a (b) [[all -> [al

(e)a -> [a] > a ; (d) [al => [[a]] -> [a]

4. Suppose (++) is defined as follows:

[++ ys = ys
(x:x8) ++ y8 = x: Xs ++ ys

How many times is the second line of the definition invoked in the computation of the
following expression?

foldr (++) "" ["abcde", "fghij", "klmno", "pqrst", "uvwxy", "z"]

(a) 75 (b) 101 (c) 25 (d) 26

5. What is the position of (5,2) in the following list (counting positions from 0)?
[(§,1) | i<~[0..9], j§ <~ [(i+1)..9]]

(a) 17 (b) 19 (c) 24 (d) 26

Part B

L. Fi]l in values for £ and v rew;erae = foldl' £ v. What are the types of your £ and
i

2. What is the result of foldr (\x (y:ys) -> x:x+y:ys) [0] [0..9]7

3. Fill in values for I,vland v2: 11 4+ 12 = foldr £ vi v2. What are the types of your
£, v1 and v27?

4,

Given the following definition of £ip - - Int -> Int, trace the computation of fib 6.

fib 0 =0
fib 1 = 1
fib n =

fib (n-1) + fip (n-2)

How many times do you evaluate £ib 1 in the course of this computation? [~]

5. Define the function subSeq :: [Char] -> [Char] -> Bool such that subSe
True exactly when xs is a sub

q X8 ysis
sequence of ys, i.e. xs is obtained by omitting some
characters in ys and reading the remaining characters from start to end.
Part C
1. Define the function elemIndex :: Char -> String -> Maybe Int with the following
behaviour.
If x is not in the list ys, the return value js Nothing. Otherwise it is Just i, where 1 is
the least such that ys!1i == x. (10 marks)
2. Modify the £ib function

given earlier to get a function fibAndCount -
that on input n computes £ib n as well as the number of times addition is used in the
computation of £ib n.

For instance: fibAndCount 5 returns (5, 7) and fibAndCount 19 returns (4181, 6764).
(How do I know those numbers? That’s how smart I am/)

(10 marks)

Trace the computation of fib 3 for the following definition of £ib, (12 marks)

fib n = fibs I! n
fibs = 0:1:zipWith (+) fibs (tail fibs)

Recall that (!!) is defined by:

(x:xs) 11 0
(x:xs) Il n

X
xs !! (n-1)

:: Int -> (Int, Int)

o

v - —_—

and zipWith is defined by:

zipWith £ [1 - (1
zipWith £ _ [] = [
zipWith £ (x:xs) (y:ys) = f x y: zipWith f xs ys

4. A finite list of integers is a dyadic numeral if each entry is either 1 or 2. Its value is a
natural number defined by the following expression:

value :: [Int] -> Int
value ds = sum [(2"(maxInd-i))#*(ds!!i) | i <- [0..maxInd]]
where maxInd = length ds - 1

Note that the empty list is also a dyadic numeral, with value 0. The advantage of dyadic
numerals over binary numbers (as you can verify at leisure) is that each natural number
has a unique dyadic representation. The representations for 0 to 5 are, respectively, [J,
[11, [2], [1,1], [1,2], and [2,1].

(a) Give a direct recursive definition of value :: [Int] -> Int without using (!!) or

(27 (8 marks)
(b) Define the function dyadic :: Int -> [Int] such that dyadic n gives the dyadic
representation of the natural number n. ' (10 marks)

