Analysis 1 - End Sem

Date & Time: 22 March, 2021; 14:00 to 16:30 (Upload before 17:00)

Maximum marks: 100

Instructions:

- When you use any result **proved in the class**, do state it clearly.
- If you use a result **not proved in the class**, do prove it.
- Do make sure that you finish well in time so that you have time to upload.
- Please respect the integrity and sanctity of the examination process.
- 1. (20 marks)
 - (a) Let $\{a_n\}$ be an unbounded sequence of real numbers. Does it necessarily have a monotonic (increasing or decreasing) subsequence? Justify.
 - (b) Let $\{a_n\}$ and $\{b_n\}$ be two Cauchy sequences in \mathbb{Q} . Then is the sequence $\{c_n\}$ given by $c_n := |a_n b_n|$ Cauchy? Justify.
- 2. (20 marks)
 - Let $\{x_n\}$ be a sequence of real numbers. Prove or disprove the following statements.

 - a) If the series $\sum_{n=1}^{\infty} x_n$ converges in \mathbb{R} , so does the series $\sum_{n=1}^{\infty} x_n^2$. b) If the series $\sum_{n=1}^{\infty} x_n$ converges in \mathbb{R} , so does the sequence (y_n) where $y_n := \sum_{j=n}^{\infty} x_j$
- 3. (20 Marks)

Recall the exponential function $e^x: \mathbb{R} \to (0,\infty)$ which we showed to be bijective. Let log denote its inverse function. Show that log is continuously differentiable. Also show that for any $x \in [1, 2]$, we have

$$\log(x) = \int_1^x \frac{1}{t}$$

4. (16 Marks)

Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and bijective. Then show that the inverse f^{-1} is also continuous. Hint: Intermediate Value Theorem

5. (24 marks)

Let $f: [0,1] \rightarrow \{0,1\}$ be defined as f(x) = 0 if and only if x = 0. Let $g: [0,1] \to [0,1]$ be defined as g(x) = 0 if x = 0 or $x \notin \mathbb{Q}$. Further $g(x) = \frac{1}{q}$ when $x = \frac{p}{q}$ (p, q are co-prime).

Prove or disprove the following statements.

a) f is integrable

- b) q is integrable
- c) The composition fog is integrable.