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1 Introduction

In a letter to Bernhard Frénicle de Bessy (1605-1675) dated October 18,
1640, Fermat stated: If p is a prime and a is any integer not divisible by
p, then p divides ap−1 − 1, along with the comment, “I would send you the
demonstration, if I did not fear its being too long.” This theorem had since
been known as “Fermat’s Little Theorem” or just “Fermat’s Theorem”, to
distinguish it from Fermat’s “Great” or “Last Theorem”. Euler published
the first proof of this theorem in 1736. However, Leibniz also left an identical
argument in an unpublished manuscript sometime before 1683.

2 Preliminaries

The theorems and proofs to be discussed require some preliminaries, which
are explained below.

2.1 Congruences and classes of residues

If a, b ∈ Z and b = ak for some k ∈ Z, then we say “a is a divisor of b” or “a
divides b”, and write a | b. If m | x− a, we say “x is congruent to a modulo
m”, and write x ≡ a (modm).

If x ≡ a (modm), then a is called residue of xmodulom. If 0 ≤ a ≤ m−1,
then a is the least residue (non-negative) of x. Thus, two integers a and b
congruent modulo m have the same residues modulo m. A class of residues
modulo m is the class of all the integers congruent to a given residue modulo
m, and every member of the class is called a representative of the class. In
this case, there are a total of m classes, represented by 0, 1, . . . ,m−1. These
m numbers, or any other set of m numbers which belongs to each of the m
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classes, form a complete set (or system) of incongruent residues modulo m,
or simply complete set (or system) of residues modulo m.

Assuming the knowledge of the basic properties of congruences, we prove
some theorems.

Theorem 1. If (k,m) = d, then

ka ≡ ka′ (modm) =⇒ a ≡ a′
(
mod

m

d

)
Proof. Since (k,m) = d, so k = dk1 and m = dm1 for some k1,m1 with
(k1,m1) = 1. Then

ka− ka′

m
=

k1(a− a′)

m1

and since m | ka− ka′ and (k1,m1) = 1, so

m1 | a− a′ or, a ≡ a′ (modm1)

□

A particular case of this theorem is the following.

Corollary 1.1. If (k,m) = 1, then

ka ≡ ka′ (modm) =⇒ a ≡ a′ (modm)

Theorem 2. If a1, a2, . . . , am is a complete set of incongruent residues (mod
m) and (k,m) = 1, then ka1, ka2, . . . , kam is also such a set.

Proof. Using Corollary 1.1 we have,

kai ≡ kaj (modm) =⇒ ai ≡ aj (modm)

which is impossible unless i = j, by hypothesis. □

Theorem 3. If (m,m′) = 1, a runs through a complete set of residues
(mod m) and a′ runs through a complete set of residues (mod m′). Then
a′m+ am′ runs through a complete set of residues (mod mm′).

Proof. Firstly, there are mm′ integers a′m+ am′. Suppose

a′1m+ a1m
′ ≡ a′2m+ a2m

′ (modmm′)
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Then,
a′1m+ a1m

′ ≡ a′2m+ a2m
′ (modm)

i.e.,
a1m

′ ≡ a2m
′ (modm)

Now, (m,m′) = 1 gives
a1 ≡ a2 (modm)

and similarly,
a′1 ≡ a′2 (modm′)

which are impossible by hypothesis. □

We present below some lemmas that will be necessary to prove some the-
orems in the following sections.

Lemma 1: The product of any n successive positive integers is divisible
by n!.

Proof: Let
Pn,m = m(m+ 1) · · · (m+ n− 1)

be the product of n successive positive integers starting from m.

Lemma 2: If p is a prime, then
(
p
k

)
≡ 0 (mod p) for 1 ≤ k ≤ p− 1.

Proof: Since

k!

(
p

k

)
= p(p− 1) · · · (p− k + 1) ≡ 0(mod p)

we are done. □

3 Fermat’s theorem

We begin with proving Fermat’s theorem.

Theorem 4 (Fermat’s theorem). If p is a prime and p ∤ a, then

ap−1 ≡ 1 (mod p)
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Proof. Consider the set S of the first p− 1 positive integer multiples of a,
i.e.,

S = {a, 2a, . . . , (p− 1)a}
Since {1, 2, . . . , p − 1} is a complete set of incongruent residues (mod p), so
by Theorem 2, S is also such a set. Therefore, the elements of S must be
congruent modulo p to 1, 2, . . . , (p− 1) taken in some order. Thus, we have

a · 2a · · · (p− 1)a ≡ 1 · 2 · · · (p− 1) (mod p)

i.e.,
ap−1(p− 1)! = (p− 1)! (mod p)

Since p doesn’t divide any of 1, 2, . . . , (p− 1), so p ∤ (p− 1)! and hence

ap−1 ≡ 1 (mod p)

□

More generally, we can drop the condition p ∤ a to arrive at the following
corollary.

Corollary 4.1. If p is a prime, then ap ≡ a (mod p).

Proof. This is trivial when p | a, since then ap ≡ 0 ≡ a (mod p). If
p ∤ a, the result of Theorem 1 can be multiplied by a on both sides to get

ap ≡ a (mod p)

□

Remark. There is a different proof of Corollary 4.1, using induction
on a. We first prove it for a ∈ N. The statement is clearly true for a = 0 and
a = 1. Assuming that the statement is true for some a ∈ N, we shall prove
that it is true for a+ 1 also. In light of the binomial theorem,

(a+ 1)p =

p∑
k=0

(
p

k

)
ap−k = ap +

(
p

1

)
ap−1 + · · ·+

(
p

p− 1

)
a+ 1

Observe that (
p

k

)
≡ 0 (mod p) for 1 ≤ k ≤ p− 1

because note that

k!

(
p

k

)
= p(p− 1) · · · (p− k + 1) ≡ 0 (mod p)
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and so p | k! or p |
(
p
k

)
, but p | k! implies that p | l for some l satisfying

1 ≤ l ≤ k ≤ p− 1, which is absurd. This gives

(a+ 1)p ≡ ap + 1 ≡ a+ 1 (mod p)

Now, if a < 0, then a ≡ r (mod p) for some r satisfying 0 ≤ r ≤ p− 1. So we
still have

ap ≡ rp ≡ r ≡ a (mod p)

□

Lemma 1. If p and q are distinct primes with ap ≡ a (mod q) and aq ≡
a (mod p), then

apq ≡ a (mod pq)

Proof. Using Corollary 4.1, we have

apq = (aq)p ≡ ap ≡ a (mod p)

Similarly, we have
apq ≡ a (mod q)

Hence,
apq ≡ a (mod pq)

□

4 Euler’s generalization

Euler extended Fermat’s theorem which concerns congruences with prime
moduli, to arbitrary moduli. While doing so, he defined an important number-
theoretic function, described below.

4.1 Euler’s phi-function ϕ(n)

Definition 1. For m ≥ 1, ϕ(m) denotes the number of positive integers
not exceeding m that are relatively prime to m, i.e., the number of integers
n such that 0 < n ≤ m and (n,m) = 1.

There are ϕ(m) classes of residues (mod m) relatively prime to m, and any
such set of ϕ(m) residues, one from each class, is called a complete system
(or set) of residues relatively prime to m. One such set is the set of ϕ(m)
positive integers less than and relatively prime to m.
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Theorem 5. If a1, a2, . . . , aϕ(m) is a complete set of residues relatively prime
to m and (k,m) = 1, then ka1, ka2, . . . , kaϕ(m) is also such a set.

Proof. Since (k,m) = 1 and (ai,m) = 1, so (kai,m) = 1. Now, as in
the proof of Theorem 2,

kai ≡ kaj (modm) =⇒ ai ≡ aj (modm)

which is impossible unless i = j, by hypothesis. □

Definition 2. A function f is said to be multiplicative if (m,m′) = 1
implies

f(mm′) = f(m)f(m′)

Theorem 6. The function ϕ is multiplicative.

Proof. If (m,m′) = 1, then by Theorem 3, a′m + am′ runs through
a complete set of residues (mod mm′) when a and a′ run through complete
sets of residues (mod m) and (mod m′) respectively. We have

(a′m+ am′,mm′) = 1

⇐⇒(a′m+ am′,m) = 1, (a′m+ am′,m′) = 1

⇐⇒(am′,m) = 1, (a′m,m′) = 1

⇐⇒(a,m) = 1, (a′,m′) = 1

Thus, the ϕ(mm′) numbers less than and relatively prime to mm′ are the
least positive residues (mod mm′) of the ϕ(m)ϕ(m′) values of a′m+ am′ for
which a and a′ are relatively prime to m and m′ respectively, i.e.,

ϕ(mm′) = ϕ(m)ϕ(m′)

□

Incidentally we have proved the following theorem.

Theorem 7. If (m,m′) = 1, a runs through a complete set of residues
relatively prime to m and a′ runs through a complete set of residues rela-
tively prime to m′. Then a′m+ am′ runs through a complete set of residues
(mod mm′).

We can now find the value of ϕ(m) for any integer m > 1. It is sufficient to
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calculate ϕ(m) when m is a power of a prime, given by the following theorem.

Theorem 8. If p is a prime and k > 0, then

ϕ (pc) = pc − pc−1 = pc
(
1− 1

p

)
Proof. There are pc − 1 positive integers less than pc, of which only the
first pc−1 − 1 multiples of p namely 1p, 2p, . . . , (pc−1 − 1)p are divisors of pc.
Thus,

ϕ(pc) = pc − 1− (pc−1 − 1) = pc − pc−1 = pc
(
1− 1

p

)
□

Using Theorem 6 and Theorem 8, we immediately have the more general
theorem for any integer m > 1.

Theorem 9. If an integer m > 1 has prime factorization m =
k∏

i=1

pi
ci ,

then

ϕ(m) =
k∏

i=1

(
pi

ci − pi
ci−1

)
= m

k∏
i=1

(
1− 1

pi

)

5 Pseudoprimes

Over 25 centuries ago, Chinese mathematicians claimed that n is prime if
and only if n | 2n − 2, a counter-example to which was discovered in 1819
that 341 | 2341 but 341 = 11 · 31. However, this statement is true for all
n ≤ 340.

Def. A composite n is called pseudoprime if n | 2n − 2.
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