
Olympiad Number Theory

Nirjhar Nath
nirjhar@cmi.ac.in

Contents

1 Divisibility 2
1.1 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Properties of Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Euclid’s Division Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Prime numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Fundamental Theorem of Arithmetic . . . . . . . . . . . . . . . . . . . . 6
1.7 Looking at Numbers as Multisets . . . . . . . . . . . . . . . . . . . . . . 6
1.8 gcd and lcm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.10 Euclid’s Division Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.11 Bezout’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



1 Divisibility

1.1 Multiplication

To understand divisibility, let us look at its source – multiplication tables. As an example,
let’s look at the multiplication table of 3.

...
3× (−3) = −9
3× (−2) = −6
3× (−1) = −3

3× 0 = 0
3× 1 = 3
3× 2 = 6
3× 3 = 9

...

So the set of multiples of 3 is M = {. . . ,−9,−6,−3, 0, 1, 3, 6, 9, . . . } and any number in
this list is called a multiple of 3, and is said to be divisible by 3. Note that the set
of multiples of an integer m is of the form {mq | q ∈ Z}. So we can formally define the
following:

Definition 1.1.1. An integer n is said to be a multiple of another integer m if n = mq
for some q ∈ Z (we can also say that m is a factor or divisor of n). A number n is said
to be divisible by n if n is a multiple of m; also, we say that m divides n (symbolically
m | n).

We denote ‘m does not divide n’ by m ∤ n.

1.2 Properties of Divisibility

Proposition 1.2.1 (Basic Properties of Divisibility). For any three integers a, b, and c,
the following statements are true.

1. a | 0 and ±1 | a.

2. a | a.

3. If a ̸= 0, then 0 ∤ a. In the case when a = 0, since 0/0 is undefined, 0 | 0 is also
meaningless.

4. If a | b and b | c, then a | c.

5. If a | b, then a | −b, −a | b and −a | −b.

6. If a | b, then a | bk for all k ∈ Z.

7. If a | b, then ak | bk for all k ∈ Z.

8. If ak | bk for some k ̸= 0, then a | b.

9. If a | b and b ̸= 0, then |b| ≥ |a|. In other words, if a | b and |a| > |b|, then we have
b = 0.
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10. If a | b, then an | bn for all n ≥ 0.

Proof. These results are very easy to prove. I’ll prove a few of them. A general approach
to solve this kind of problems is simply transforming them into equations, i.e., when x | y,
write y = kx for some integer k.

3. We want to prove that a ̸= 0 =⇒ 0 ∤ a. Note that proving this is equivalent to
proving 0 | a =⇒ a = 01. Now, 0 | a means a = 0k for some integer k, i.e., a = 0.

4. a | b means b = ak1 for some k1 ∈ Z and b | c means c = bk2 for some k2 ∈ Z.
Therefore, c = (ak1)k2 = a(k1k2), where k1k2 ∈ Z, i.e., a | c.

6,7. a | b means b = aq for some q ∈ Z. So bk = aqk, i.e., a | bk and ak | bk.

8. ak | bk means bk = akq for some q ∈ Z. Since k ̸= 0, so cancelling k from both
sides, we get b = aq, i.e., a | b.

9. a | b means b = ak for some k ∈ Z. So, |b| = |ak| = |a| · |k| ≥ |a|. (Here, |k| ≥ 1
since b ̸= 0.)

10. Hint: Use induction on n.

Proposition 1.2.2. If a | b and b | a, then |a| = |b|. In other words, a = ±b.

Proof. Using part 9 of Proposition 1.2.1 gives |a| ≤ |b| and |b| ≤ |a|, which implies
|a| = |b|. So a = ±b. (You can also prove this as follows: Write b = ak1 and a = bk2 for
integers k1, k2. Then a = (ak1)k2 =⇒ k1k2 = 1. So either k1 = k2 = 1 or k1 = k2 = −1,
i.e., a = ±b.)

Proposition 1.2.3. If a | b and a | c, then a | bx + cy for arbitrary integers x, y. More
generally, if a | b1, a | b2, . . . , a | bn, then for arbitrary integers x1, x2, . . . , xn,

a |
n∑

i=1

aixi.

Proof. b = ak1 and c = ak2 for integers k1, k2. So bx+cy = (ak1)x+(ak2)y = a(k1x+k2y),
i.e., a | bx+ cy. A similar approach also proves the general result.

I am proving the following lemma as it will help us to solve the problems in the next
section.

Lemma 1.2.1. a | ak + r ⇐⇒ a | r for integers a, k, r.

Proof. If a | ak+ r, then ak+ r = aq for some q ∈ Z. So, a(q− k) = r, i.e., a | r. So one
direction is proven. To prove the other direction, if a | r, then r = aq for some q ∈ Z.
Add ak on both sides to get ak+ r = a(q+ k), i.e., a | ak+ r. (Note that you could also
prove this using Proposition 1.2.3 as follows: If a | ak + r, then since we also have a | a,
so a | (ak + r)(1) + a(−k) = r. If a | r, then since a | a, so a | r(1) + a(k) = ak + r.)

Remember this result in the following way: If a divides r plus a multiple of a, then
you can just drop the multiple of a to get a divides r. Also, if a divides r, then a also
divides r plus any multiple of a (in fact, a also divides any multiple of r plus any multiple
of a, due to Proposition 1.2.3, i.e., a | r =⇒ a | ak + rℓ.)

1For statements p and q, the contrapositive of p =⇒ q is ∼ q =⇒ ∼ p and both of them are logically
equivalent. Read this.
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1.3 Problems

Problem 1.3.1. Show that if n > 1 is an integer, we can’t have n | 2n2 + 3n+ 1.

Solution 1.3.1. Observe that 2n2 + 3n+ 1 = n(2n+ 3) + 1, i.e., a multiple of n plus 1.
So if n | 2n2 + 3n + 1, then by Lemma 1.2.1, we have n | 1. But since n > 1, this is not
possible, i.e., we can’t have n | 2n2 + 3n+ 1. □

Problem 1.3.2. Let a > b be natural numbers. Show that a ∤ 2a+ b.

Solution 1.3.2. If a | 2a+ b, then Lemma 1.2.1 would imply that a | b. But it is already
given that a > b, a contradiction. (Why?) □

Problem 1.3.3. For which integers n, 2n−1
n+7

is an integer.

Solution 1.3.3. 2n−1
n+7

is an integer if n + 7 | 2n− 1. Our main idea is to get something
of the form: n+7 divides “an integer”. So we should try to get rid of the n on the right.
Using Lemma 1.2.1, we have,

n+ 7 | 2n− 1

=⇒ n+ 7 | 2(n+ 7)− (2n− 1)

=⇒ n+ 7 | 15

i.e., n + 7 is a factor of 15. But, all the factors of 15 are −15,−5,−3,−1, 1, 3, 5, 15 and
n+7 can take only these values, i.e., 2n−1

n+7
is an integer for the following integer values of

n: −22,−12,−10,−8,−6,−4,−2, 8. □

1.4 Euclid’s Division Lemma

Definition 1.4.1. When an integer b is divided by another integer a, we can write
b = aq+ r for some integers q and r. In this general case, we call r the remainder of the
division. However, if we choose q such that 0 ≤ r < |a|, then we say r is the minimum
remainder of the division. A division in which r is the minimum remainder is called a
proper division. In case of proper division, we call a, b and q the dividend, divisor
and the quotient respectively.

Note that proper division is the division you have been doing all along; you always
chose r to be the minimum remainder. For example, when I tell you to divide 19 by 3,
you directly write 19 = 3 × 6 + 1, where r = 1 is the minimum remainder, so this is
proper division. However, I could have also written 19 = 3× 4 + 7 or 19 = 3× 7 + (−2)
(where the remainders are 7 and (−2) respectively), but these will not be counted as
proper division.

Now don’t be surprised by the following theorem, as throughout your whole mathe-
matical journey, you always found the remainder to be unique in case of division (we call
it proper division now).

Theorem 1.4.1 (Euclid’s Division Lemma). For fixed positive integers a and b, there are
unique integers q and r so that b = aq + r with 0 ≤ r < a. In other words, the quotient
and the minimum remainder of the division are unique.
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Proof. Note that r = 0 ⇐⇒ a | b. So we can easily rule out this case.
When a ∤ b, b has a non-zero remainder (say r) upon division by a. We can write

b = aq + r ⇐⇒ q =
b− r

a
.

So uniqueness of r implies the uniqueness of q and vice versa. Therefore, we only need
to prove that r is unique.

Assume, to the contrary, that r is not unique, i.e., ∃ integers q′, r′ so that

b = aq + r = aq′ + r′.

But this gives a(q − q′) = r′ − r, i.e., a | r′ − r. Also since both r, r′ are less than a, so
|r′ − r| < a ≤ |a|. Now recall the alternative statement for part 9 of Proposition 1.2.1:
If a | b and |a| > |b|, then we have b = 0. We can use this here (because a | r′ − r and
|a| > |r′ − r|) to get r′ − r = 0, i.e., r′ = r. This means that the minimum remainder is
unique and hence the quotient is unique.

Let me now ask all of you a question. Let a, b, n be positive integers such that a | n
and b | n. Do we necessarily have ab | n? Now note that ab | n2 is true, because we
can write n = ak1, n = bk2 for some integers k1, k2. Multiplying both these equations,
we get n2 = (ab)(k1k2). So ab | n2. However, ab | n is not necessarily true. A possible
counterexample2 could be 2 | 12, 4 | 12 but 2×4 = 8 ∤ 12. (Note that one counterexample
is enough to disprove a statement.) Find other counterexamples.

As we move ahead, you will see that we can add an extra condition, i.e., gcd(a, b) = 1,
to make this statement true. We will come to that later.

1.5 Prime numbers

Definition 1.5.1. A number greater than 1 is called a prime if it has only two divisors,
1 and the number itself. A number greater than 1 which is not a prime is composite.

The list of primes is: 2, 3, 5, 7, 11, 13, 17, . . . . Note that 2 is the only even prime. If we
agree that atoms are the building blocks of molecules, it follows by analogy that primes
are building blocks of natural numbers. You will see how this statement makes sense as
you understand the Fundamental Theorem of Arithmetic. However, there is no known
pattern in primes. There have been many estimates related to primes, one of the most
notable being the Prime Number Theorem, which states that

π(n) ≈ n

log n

where π(n) is the number of primes less than n. We shall not go into the details of this.
However, let us ask ourselves this very important question: How many primes are there?
This was answered by Euclid over 2000 years back!

Theorem 1.5.1 (Euclid). There are infinitely many primes.

Proof. Assume, to the contrary, that there are only finitely many primes (say p1, p2, . . . , pk).
Suppose p1 < p2 < · · · < pk. Construct a new number N = p1p2 · · · pk+1. Now N cannot
be a prime, because it is clearly larger than pk and our list of primes (in ascending order)
ends at pk. So N is composite and hence some prime pi in our finite list of primes should
divide N , i.e., pi | p1p2 · · · pk + 1. But since p1p2 · · · pk is a multiple of pi, so we can use
Lemma 1.2.1 to get pi | 1, a contradiction.

2A counterexample is an example that counters or disproves a statement.
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1.6 Fundamental Theorem of Arithmetic

Clearly, you can reduce any composite number into a product of primes by a process
called the prime factorization. The best part is the following:

Theorem 1.6.1. Every positive integer n greater than 1 can be written as a product of
primes in a unique way. We write this factorization as

n = pα1
1 pα2

2 · · · pαk
k

where p1, p2, . . . , pk are different primes and α1, α2, . . . , αk are positive integers.

Proof. There are two things that we require to prove here– Existence and Uniqueness.
Existence: We require to show that every positive integer greater than 1 is either a
prime or a product of primes. Clearly, 2 is a prime. Then by strong induction3, assume
that this is true for all numbers greater than 1 and less than n. If n is prime, there is
nothing to prove. If n is composite, then n = ab for some integers a and b such that
1 < a ≤ b < n. By induction hypothesis, a = pα1

1 pα2
2 · · · pαj

j and b = qβ1

1 qβ2

2 · · · qβk

k are

product of primes. But then n = ab = pα1
1 pα2

2 · · · pαj

j qβ1

1 qβ2

2 · · · qβk

k is also a product of
primes.
Uniqueness: Assume, to the contrary, that there is an integer n having two distinct
prime factorizations, say

n = pα1
1 pα2

2 · · · pαs
s = qβ1

1 qβ2

2 · · · qβt
t (1)

for primes pi, qj and positive integers αi, βj (1 ≤ i ≤ s, 1 ≤ j ≤ t). This gives

p1 | qβ1

1 qβ2

2 · · · qβt
t ,

and hence by Euclid’s Lemma (Corollary 1.11.1; this will come later), p1 must divide at
least one of qβ1

1 , qβ2

2 , . . . , qβt
t . Without loss of generality, suppose that p1 | qβ1

1 . Since q1
is a prime, the only prime divisor of qβ1

1 is p1. This means that p1 = q1 and α1 = β1.
Dividing both sides of equation (1) by pα1

1 , we get

pα2
2 pα3

3 · · · pαs
s = qβ2

2 qβ3

3 · · · qβt
t .

With similar reasoning, we can deduce that pα2
2 is equal to some other q

βj

j , say qβ2

2 .
Continuing this process, one soon realizes that s = t and all prime powers in the left side
of equation (1) appear in the right side, but maybe in a different order. In other words,
the prime factorization is unique.

1.7 Looking at Numbers as Multisets

It is often useful to look at numbers as their prime factors. So suppose we prime factorize
10 to get 10 = 2 × 5, we can just think of 10 as the set {2, 5}. Similarly, 15 can be
thought of as {3, 5}. But what about 12? We know that 12 = 22 × 3. So we can think of

3In this form of induction, one proves the statement P (m+1) under the assumption that P (n) holds
true for all natural numbers n ≤ m; by contrast, the basic form of induction, also called weak induction,
assumes only P (m).
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it as the multiset4 {2, 2, 3}. So we can write 12 ≡ {2, 2, 3}. Note that we use the symbol
≡, which means that they are equivalent. In general,

n = pα1
1 pα2

2 · · · pαk
k ≡ {p1, p1, . . . , p1︸ ︷︷ ︸

α1 times

, p2, p2, . . . , p2︸ ︷︷ ︸
α2 times

, . . . , pk, pk, . . . , pk︸ ︷︷ ︸
αk times

}.

We shall use small letters to denote numbers and capital letters (of the respective small
letters) to denote their multisets (unless stated otherwise). So if I have a number n = 30,
then N = {2, 3, 5}. Also, if a number is negative, I can just include a −1. So if n = −20,
then N = {−1, 2, 2, 5}. We clearly have the following theorem:

Theorem 1.7.1 (Divisibility in Sets). Let a, b be two integers. Then

a | b ⇐⇒ A ⊂ B.

Thinking in terms of sets is useful because we have Venn Diagrams. You will see that
a lot of properties of gcd and lcm are trivialized when you think of numbers as multisets.
Note that here, ⊂ is the notation for a subset. I shall use the notation ⊊ for proper
subsets.

1.8 gcd and lcm

Definition 1.8.1 (gcd and lcm). For two integers a and b which are not zero at the same
time, the greatest common divisor of a and b, denoted by gcd(a, b), is the greatest
positive integer which divides both a and b. The least common multiple of a and b,
denoted by lcm(a, b), is the smallest positive integer that is divisible by both a and b.
The concept is the same for the gcd and lcm of more than two integers.

Looking at the prime factorizations of a and b and their respective multisets A and B,
it is clear that gcd(a, b) = A∩B and lcm(a, b) = A∪B. The following lemma, therefore,
makes sense.

Lemma 1.8.1. Let a, b, c be three integers. Then

c | a, c | b =⇒ c | gcd(a, b).

Note that proving this is equivalent to proving C ⊂ A,C ⊂ B =⇒ C ⊂ A ∩ B. We
can geometrically interpret this lemma as:

A BC

4A multiset is an unordered collection of elements that allows duplicates, unlike a set (in which each
element occurs exactly once). The number of times an element occurs in the multiset is called the
multiplicity of that element.
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The following lemma also makes sense.

Lemma 1.8.2. Let a, b, c be three integers. Then

a | c, b | c =⇒ lcm(a, b) | c.

Now, proving this is equivalent to proving A ⊂ C,B ⊂ C =⇒ A ∪ B ⊂ C. This
lemma can be geometrically interpreted as:

A B C

I am not going into the proofs of these set theoretic results. Now, the following obvious
lemma gives you a different way to define gcd and lcm.

Lemma 1.8.3 (The prime factorization of gcd and lcm). Let a, b be two integers with
prime factorization

a = pα1
1 pα2

2 · · · pαk
k ,

b = pβ1

1 pβ2

2 · · · pβk

k .

where αi, βi are non-negative integers (possibly 0). Then

gcd(a, b) = p
min(α1,β1)
1 p

min(α2,β2)
2 · · · pmin(αk,βk)

k ,

lcm(a, b) = p
max(α1,β1)
1 p

max(α2,β2)
2 · · · pmax(αk,βk)

k .

As a consequence, we have the following result.

Lemma 1.8.4. For positive integers a and b,

gcd(a, b) ≤ a, b ≤ lcm(a, b).

When does the equality hold? See the first problem of the next problem section. Now,
we have the following property that connects gcd and lcm of two numbers.

Lemma 1.8.5 (Product of gcd and lcm). Let a, b be two integers. Then

gcd(a, b) lcm(a, b) = ab.

Proof. By Lemma 1.8.3, we have

gcd(a, b) lcm(a, b) =
(
p
min(α1,β1)
1 · · · pmin(αk,βk)

k

)(
p
max(α1,β1)
1 · · · pmax(αk,βk)

k

)
= p

min(α1,β1)+max(α1,β1)
1 · · · pmin(αk,βk)+max(αk,βk)

k

= pα1+β1

1 · · · pαk+βk

k

= (pα1
1 · · · pαk

k )
(
pβ1

1 · · · pβk

k

)
= ab
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We can also prove this using the notion of multisets. The sum of two multisets A
and B, denoted by A + B, is a multiset in which we include all the elements of A and
B (the multiplicity of each element is also added in A + B). Suppose A = {2, 2, 3} and
B = {2, 3, 5}, then A+B = {2, 2, 2, 3, 3, 5}.

Now observe that (A ∪ B) + (A ∩ B) = A + B, and the proof simply follows. (Note
that ab ≡ A+B.)

1.9 Problems

Problem 1.9.1. Prove that gcd(a, b) = a if and only if a | b.
I am not going to prove this formally. But note that this is equivalent to proving

A ∩B = A ⇐⇒ A ⊂ B.

Find a similar condition for lcm(a, b) = a.

Problem 1.9.2. Let a, b be relatively prime. Show that if a | c, b | c, then ab | c.
To prove this, you can basically prove the result: If A ∩ B = ϕ, A ⊂ C and B ⊂ C,

then A+B ⊂ C. I shall leave the formalism in your hands.

1.10 Euclid’s Division Algorithm

We always think of the gcd in terms of common prime factors. You know that when
we have an expression of the form m + n, you can take the gcd(m,n) as common. For
example, suppose m = p2q and n = pq2r for primes p, q, r. Then clearly, gcd(m,n) = pq.
So m+ n = pq(p+ qr) where gcd(a, b) = pq is taken common. After all these discussion,
do you see why

gcd(a+ b, b) = gcd(a, b),

gcd(a+ 2b, b) = gcd(a, b),

gcd(a+ 3b, b) = gcd(a, b)?

Generalizing the above problems, we have the following lemma.

Lemma 1.10.1. Let a and b be two positive integers. Divide b by a and write b = aq+r,
where q is an integer and 0 ≤ r < a. Then gcd(a, b) = gcd(a, r).

Proof. Let g = gcd(a, b). So g | a and g | b = aq + r. Now g divides a, so a is a multiple
of g, and hence aq is a multiple of g. So in g | aq+ r, we can forget aq to get g | r. (Note
that we have used Lemma 1.2.1.) So we have proved that g divides r, but we are required
to prove that g is the gcd of a and r, i.e., g is the greatest of all common divisors of a
and r. So we just require to prove: if there exists some c for which c | a and c | r, then
g ≥ c. Note that Proposition 1.2.3 gives c | aq + r = b. Thus, c is a common divisor of a
and b, but g is their gcd (greatest common divisor), so g ≥ c.

The more useful fact to remember is that gcd(a, b) = gcd(a±kb, b). One consequence
of the above lemma is the so called Division Algorithm. Suppose we want calculate
the gcd of 30 and 80. We perform division successively as follows:

80 = 30× 2 + 20

30 = 20× 1 + 10

20 = 10× 2 + 0.
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So gcd(80, 30) = gcd(30, 20) = gcd(20, 10) = 10. The last part is because 10 divides
20. The general algorithm is defined in a similar way, just keep on reducing gcd(a, b)
to gcd(b, r) and eventually one number will divide the other (or the remainder becomes
zero). We can write this as (I’m not writing the respective inequalities associated with
the remainders at every step):

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3
...

rn−3 = rn−2qn−1 + rn−1

rn−2 = rn−1qn + rn

rn−1 = rnqn+1 + rn+1

where rn+1 = 0. By now you should have this question: Why does the algorithm ter-
minate? In other words, why does the remainder eventually become zero? Think about
this!

Reversing the process of the Euclid’s Division Algorithm, we get the Bezout’s Identity.

1.11 Bezout’s Identity

Proposition 1.11.1 (Bezout’s Identity). For a, b ∈ N, ∃ x, y ∈ Z such that

ax+ by = gcd(a, b).

Proof. We reverse the process of Euclid’s Division Algorithm.

gcd(a, b) =rn

= rn−2 − rn−1qn

= rn−2 − (rn−3 − rn−2qn−1) qn

= rn−2(1 + qnqn−1)− rn−3(qn)

...

= ax+ by

where x and y are some combination of quotients.

Now if I tell you to write the gcd of 80 and 30 (which is 10, calculated as above) as
a combination of 80 and 30. Reverse the process of division algorithm applied to 80 and
30 (refer to that) here.

gcd(80, 30) = 10 = 30− 20× 1

= 30− (80− 30× 2)× 1

= 30× 3 + 80× (−1).

Lemma 1.11.1. If c | ab and gcd(c, a) = 1, then c | b.

Proof. Use Bezout’s identity here. Since gcd(c, a) = 1, so cx + ay = 1 for some integers
x, y. Multiplying cbx + aby = b. Now we can use the fact that c | ab to get ab = ck for
some integers k. Using this, we get cbx+ cky = b =⇒ c(bx+ ky) = b =⇒ c | b.
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As a corollary, we have the following result.

Corollary 1.11.1 (Euclid’s Lemma). If p | ab for a prime p and integers a, b, then p | a
or p | b. In fact, the generalization: if p | a1a2 · · · ak, then p divides at least one of
a1, a2, . . . , ak, also holds true.

Proof. Given that p | ab. If p | a, then we are done. If p ∤ a, then gcd(a, b) = 1. Using
the previous lemma, we have p | b. (See for yourself why the generalization is true.)

Do you remember that the question I asked before after I proved the Euclid’s Division
Lemma? Adding the extra condition gcd(a, b) = 1, we have the following proposition.

Proposition 1.11.2. Let a, b, n be positive integers such that gcd(a, b) = 1, a | c and
b | c. Then ab | c.
Proof. We shall use Bezout’s identity. We know that ∃ x, y ∈ Z such that

ax+ by = gcd(a, b) = 1. (2)

Since a | c and b | c, so c = ak1 = bk2 for some k1, k2 ∈ Z. Multiplying equation (2) by
k2, we get

ak2x+ bk2y = k2

=⇒ ak2x+ ak1y = k2

=⇒ ab(k2x+ k1y) = bk2 = c

=⇒ ab | c.

I shall not discuss any more theory now. We shall solve some problems. But before
that, see for yourself why the following equation is true:

gcd (am − 1, an − 1) = agcd(m,n) − 1. (3)

Hint: Apply Euclid’s Division Algorithm over the powers m,n.

1.12 Problems

Problem 1.12.1 (PUTNAM 2000). Prove that the expression

gcd(m,n)

n

(
n

m

)
is an integer for all pairs of integers n ≥ m ≥ 1.

Solution 1.12.1. We apply Bezout’s Identity. Write gcd(m,n) = mx+ ny. Therefore,

gcd(m,n)

n

(
n

m

)
=

mx+ ny

n

(
n

m

)
= x · m

n

(
n

m

)
+ y

(
n

m

)
= x · m

n
· n!

m!(n−m)!
+ y

(
n

m

)
= x · (n− 1)!

(m− 1)!((n− 1)− (m− 1))!
+ y

(
n

m

)
= x

(
n− 1

m− 1

)
+ y

(
n

m

)
∈ Z.
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as both the addends are integers. □

Problem 1.12.2 (All Russia Mathematics Olympiad 1995). Let m,n be positive integers
such that

gcd(m,n) + lcm(m,n) = m+ n.

Show that one of the two numbers is divisible by the other.

Solution 1.12.2. Let gcd(m,n) = g. It seems that we really can’t do anything here,
other writing lcm(m,n) = mn/g. Let’s do that.

g +
mn

g
= m+ n =⇒ mn+ g2 = g(m+ n) =⇒ (m− g)(n− g) = 0.

Therefore g = m or g = n. Remember that we had seen: gcd(a, b) = a ⇐⇒ a | b (this
was Problem 1.9.1). So g = m ⇐⇒ m | n and g = n ⇐⇒ n | m ,i.e., one of m,n is
divisible by the other. □

Problem 1.12.3 (Iran 2005). Let n, p > 1 be positive integers and p be a prime. Given
that n | p− 1 and p | n3 − 1, prove that 4p− 3 is a perfect square.

Solution 1.12.3. n | p− 1 =⇒ p ≥ n+ 1 and p = nk+ 1 for some k ∈ Z. Now how do
you approach this problem? Looking at n3− 1 hints you to write it as (n− 1)(n2+n+1)
and then apply the Euclid’s Lemma. Let’s do that.

p | (n− 1)(n2 + n+ 1) =⇒ p | n− 1 or p | n2 + n+ 1.

But note that p | n − 1 implies p ≤ n − 1, which contradicts p ≥ n + 1. Therefore,
p | n2 + n+ 1 only and hence,

p ≤ n2 + n+ 1 (4)

Note that we haven’t really used p = nk + 1 yet. We use this now:

nk + 1 | n2 + n+ 1 | k(n2 + n+ 1) =⇒ nk + 1 | kn2 + kn+ k− n(nk + 1) = kn+ k− n.

So nk + 1 ≤ kn+ k − n =⇒ n+ 1 ≤ k. Therefore,

p = nk + 1 ≥ n(n+ 1) + 1 = n2 + n+ 1.

Combining this with equation (4), we get p = n2 + n+ 1. Now you can calculate further
to get 4p− 3 = (2n+ 1)2, which is obviously a perfect square. □

Problem 1.12.4. Define the nth Fermat number Fn = 22
n
+ 1, n ≥ 0. Show that for

m ̸= n, gcd(Fm, Fn) = 1.

I shall not prove this. But I’ll give you a walkthrough of the solution: First prove the
identity Fn−2 = Fn−1Fn−2 · · ·F0. Suppose n > m, then Fm | Fn−2. If a prime p divides
both Fm and Fn, then p | 2. (Why?) Do you now see why Fm, Fn should be relatively
prime (i.e., gcd of them is 1)?

As an ending note, let me cite the book I followed for these notes: Modern Olympiad
Number Theory by Aditya Khurmi. This book mostly covers all the theory required for
number theory in olympiads.
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