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1 Continued fractions

1.1 Finite continued fractions

We shall describe the function

⟨x0, x1, . . . , xj⟩ = x0 +
1

x1 +
1

x2 + ...

+
1

xj−1 +
1

xj

in j+1 variables x0, x1, . . . , xj ∈ R as a finite continued fraction, or, when there is no risk
of ambiguity, simply as a continued fraction. Such a finite continued fraction is called
simple if all the xi’s are integers. It is obvious that

⟨x0, x1, . . . , xj⟩ = x0 +
1

⟨x1, . . . , xj⟩
=

〈
x0, x1, . . . , xj−2, xj−1 +

1

xj

〉
Below we see the simple continued fraction expansion of rational numbers.

1.2 The Euclidean algorithm

Given any rational number u0/u1 so that (u0, u1) = 1 and u1 > 0, by Euclidean algorithm,
we have

u0 = u1a0 + u2, 0 < u2 < u1

u1 = u2a1 + u3, 0 < u3 < u2

u2 = u3a2 + u4, 0 < u4 < u3 (1)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
uj−1 = ujaj−1 + uj+1, 0 < uj+1 < uj

uj = uj+1aj

We write ξi = ui/ui+1 for all values in the range 0 ≤ i ≤ j, the equations (1) become

ξi = ai +
1

ξi+1

, 0 ≤ i ≤ j − 1; ξj = aj (2)

Taking the first two of the equations of (2), i.e. those for which i = 0 and i = 1, and
eliminate ξ1, we have

ξ0 = a0 +
1

a1 +
1
ξ2

Here we replace ξ2 by its value from (2) and then continue replacing ξ3, ξ4, . . . to get

u0

u1

= ξ0 = a0 +
1

a1 +
1

a2 + ...

+
1

aj−1 +
1

aj

= ⟨a0, a1, . . . , aj⟩ (3)
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This is a continued fraction expansion of ξ0 = u0/u1. The integers ai are called the
partial quotients since they are the quotients in the repeated application of the division
algorithm in equations (1).

1.3 Uniqueness

We saw that any such fraction as 51/22 can be expanded into a simple continued fraction,
51/22 = ⟨2, 3, 7⟩. It can be verified that 51/22 can also be expressed as ⟨2, 3, 6, 1⟩, but it
turns out that these are the only two representations of 51/22. In general, we note that
the simple continued fraction expansion (3) has an alternate form,

u0

u1

= ⟨a0, a1, . . . , aj−1, aj⟩ = ⟨a0, a1, . . . , aj−1, aj − 1, 1⟩ (4)

The following result establishes that these are the only two simple continued fraction
expansions of a fixed rational number.

Theorem 1. If ⟨a0, a1, . . . , aj⟩ = ⟨b0, b1, . . . , bn⟩ where these finite continued fractions are
simple, and if aj > 1 and bn > 1, then j = n and ai = bi for i = 1, 2, . . . , n.

Proof. We write yi for the continued fraction ⟨bi, bi+1, . . . , bn⟩ and observe that

yi = ⟨bi, bi+1, . . . , bn⟩ = bi +
1

⟨bi+1, bi+2, . . . , bn⟩
= bi +

1

yi+1

(5)

Thus we have yi > bi and yi > 1 for i = 1, 2, . . . , n − 1, and yn = bn > 1. Consequently,
we have bi = [yi] for all values of i in the range 0 ≤ i ≤ n. Using the notation of equation
(3), we have y0 = ξ0. We have, ξi = ui/ui+1 > 1 for all values of i > 0 and so ai = [ξi] for
0 ≤ i ≤ j. Now, b0 = [y0] = [ξ0] = a0. By equations (2) and (5), we have

1

ξ1
= ξ0 − a0 = y0 − b0 =

1

y1
=⇒ ξ1 = y1, a1 = [ξ1] = [y1] = b1

We use induction as follows. Assume that ξk = yk and ak = bk. We use equations (2)
and (5) again to write

1

ξk+1

= ξk − ak = yk − bk =
1

yk+1

=⇒ ξk+1 = yk+1,

ak+1 = [ξk+1] = [yk+1] = bk+1

It must also follow that the continued fractions have the same length, i.e., that j = n,
because if j < n then by equation (2), we have ξj = aj and by equation (5), we have
yj > bj which contradicts the fact that ξj = yj, aj = bj. Similar argument holds for j > n,
and thus j = n.

Theorem 2. Any finite simple continued fraction represents a rational number. Con-
versely, any rational number can be expressed as a finite simple continued fraction, and
in exactly two ways.

Proof. The first assertion can be established by induction on the number of terms in the
continued fraction, by use of the formula

⟨a0, a1, . . . , aj⟩ = a0 +
1

⟨a1, a2, . . . , aj⟩
=

a0(⟨a1, a2, . . . , aj⟩) + 1

⟨a1, a2, . . . , aj⟩
The second assertion follows from the development of u0/u1 into a finite simple continued
fraction in Section 1.2, together with equation (4) and Theorem 1.
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1.4 Infinite continued fractions

Let a0, a1, a2, . . . be an infinite sequence with a0 ∈ Z and a1, a2, · · · ∈ Z+. We define two
sequences of integers {hn} and {kn} inductively as follows:

h−2 = 0, h−1 = 1, hi = aihi−1 + hi−2 for i ≥ 0

k−2 = 1, k−1 = 0, ki = aiki−1 + ki−2 for i ≥ 0
(6)

We note that k0 = 1, k1 = a1 ≥ 1 = k0, k2 > k1, k3 > k2 so that

1 = k0 ≤ k1 < k2 < k3 < · · · < kn < · · ·

Theorem 3. For any x ∈ R+,

⟨a0, a1, . . . , an−1, x⟩ =
xhn−1 + hn−2

xkn−1 + kn−2

Proof. For n = 0, we have the equation

x =
xh−1 + h−2

xk−1 + k−2

which is true by equations (6). We have,

⟨a0, x⟩ = a0 +
1

x
=

xa0 + 1

x
=

xh0 + h−1

xk0 + k−1

i.e., the theorem is true for n = 1. We establish the theorem in general by induction.
Assuming that the theorem holds for ⟨a0, a1, . . . , an−1, x⟩, we have

⟨a0, a1, . . . , an, x⟩ =
〈
a0, a1, . . . , an−1, an +

1

x

〉
=

(an + 1/x)hn−1 + hn−2

(an + 1/x)kn−1 + kn−2

=
x(anhn−1 + hn−2) + hn−1

x(ankn−1 + kn−2) + kn−1

=
xhn + hn−1

xkn + kn−1

and hence the theorem is proved.

Theorem 4. If rn
def
= ⟨a0, a1, . . . , an⟩ ∀ n ≥ 0, then rn = hn/kn.

Proof. Using Theorem 3 and equations (6), we have

rn = ⟨a0, a1, . . . , an⟩ =
anhn−1 + hn−2

ankn−1 + kn−2

=
hn

kn

and we are done.

We call ⟨a0, a1, . . . , an⟩ = hn/kn = rn the nth convergent to the infinite continued
fraction ⟨a0, a1, a2, . . . ⟩. In the case of a finite simple continued fraction, we similarly call
the number ⟨a0, a1, . . . , an⟩ (0 ≤ n ≤ j) the nth convergent to ⟨a0, a1, . . . , aj⟩.
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Theorem 5. The following equations hold for i ≥ 1:

hiki−1 − hi−1ki = (−1)i−1

ri − ri−1 =
(−1)i−1

kiki−1

hiki−2 − hi−2ki = (−1)iai

ri − ri−2 =
(−1)iai
kiki−2

The fraction hi/ki is reduced, i.e., (hi, ki) = 1.

Proof. The equations (6) imply that h−1k−2 − h−2k−1 = 1. We use induction. Assuming
that hiki−1 − hi−1ki = (−1)i−1 and using equations (6), we have

hi+1ki − hiki+1 = (ai+1hi + hi−1)ki − hi(ai+1ki + ki−1) = −(hiki−1 − hi−1ki) = (−1)i

This proves the first result and dividing this by kiki−1 and using Theorem 4, we get the
second result. The third result is proved below.

hiki−2 − hi−2ki = (aihi−1 + hi−2)ki−2 − hi−2(aiki−1 + ki−2)

= (hi−1ki−2 − hi−2ki−1)ai

= (−1)i−2ai = (−1)iai

Dividing the third result by kiki−2 and using Theorem 4, we get the fourth result. Fur-
thermore, the fraction hi/ki is reduced since by the first result, any common factor of hi

and ki is also a factor of (−1)i−1.

Theorem 6. The even convergents r2m increase strictly with m, while the odd convergents
r2m+1 decrease strictly, and every odd convergent is greater than any even convergent, i.e.,
the values rn satisfy the infinite chain of inequalities

r0 < r2 < r4 < r6 < · · · < r7 < r5 < r3 < r1

and every r2p is less than every r2q−1. Furthermore, lim
n→∞

rn exists and for every m ≥ 0,

r2m < lim
n→∞

rn < r2m+1

Proof. Since ai > 0 and ki > 0 for i ≥ 1 and i ≥ 0 respectively, thus using the second
and fourth results of Theorem 5, we have

r2m < r2m−1, r2m < r2m+2 and r2m−1 > r2m+1

Using these results, we prove that r2p < r2q−1 as follows.

r2p < r2p+2q < r2p+2q−1 ≤ r2q−1

Thus, we have proved the desired infinite chain of inequalities.
The sequence {r2m} is monotonically increasing and is bounded above by r1, and so

lim
m→∞

r2m exists. Analogously, {r2m+1} is monotonously decreasing and is bounded above

by r0, and so lim
m→∞

r2m+1 also exists. Also, ki ≥ i ∀ i ≥ 1 since

1 = k0 ≤ k1 < k2 < k3 < · · · < kn < · · ·
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and so by the second result of Theorem 5, we have

0 ≤ r2m+1 − r2m =
(−1)2m

k2m+1k2m
≤ 1

2m(2m+ 1)

As m → ∞,
1

2m(2m+ 1)
→ 0 and so by Squeeze theorem, we have

lim
m→∞

r2m = lim
m→∞

r2m+1

and hence lim
n→∞

rn exists and r2m < lim
n→∞

rn < r2m+1 for every m ≥ 0.

Definition 1. An infinite sequence a0, a1, a2, . . . with a0 ∈ Z and a1, a2, · · · ∈ Z+ deter-
mines an infinite simple continued fraction ⟨a0, a1, a2, . . . ⟩ with value

⟨a0, a1, a2, . . . ⟩
def
= lim

n→∞
rn

Theorem 7. The value of any infinite simple continued fraction ⟨a0, a1, a2, . . . ⟩ is irra-
tional.

Proof. Writing θ = ⟨a0, a1, a2, . . . ⟩, we observe by Theorem 6 that θ lies between rn and
rn+1, so that 0 < |θ − rn| < |rn+1 − rn|. Multiplying by kn, and making use of the result
from Theorem 5 that |rn+1 − rn| = 1/knkn+1, we have

0 < |knθ − hn| <
1

kn+1

Now suppose that θ were rational, say θ = a/b with a, b ∈ Z, b > 0. Then multiplying
the above equation by b, we have

0 < |kna− hnb| <
b

kn+1

The integers kn increase with n, so we could choose n sufficiently large so that b < kn+1.
Then the integer |kna− hnb| would lie between 0 and 1, which is impossible.

Lemma 1. Let θ = ⟨a0, a1, a2, . . . ⟩ be a simple continued fraction. Then a0 = [θ].
Furthermore, if θ1 denotes ⟨a1, a2, a3, . . . ⟩, then θ = a0 + 1/θ1.

Proof. By Theorem 6, we see that r0 < θ < r1, i.e., a0 < θ < a0 + 1/a1. Since a1 ≥ 1, so
a0 < θ < a0 + 1 and hence [θ] = a0. Also,

θ = lim
n→∞

⟨a0, a1, . . . , an⟩ = lim
n→∞

(
a0 +

1

⟨a1, a2, . . . , an⟩

)
= a0 + lim

n→∞

1

⟨a1, a2, . . . , an⟩
= a0 +

1

θ1

Theorem 8. Two distinct infinite simple continued fractions converge to different values.

Proof. Let ⟨a0, a1, a2, . . . ⟩ and ⟨b0, b1, b2, . . . ⟩ = θ. Then by Lemma 1, a0 = [θ] = b0 and

θ = a0 +
1

⟨a1, a2, . . . ⟩
= b0 +

1

⟨b1, b2, . . . ⟩

Hence ⟨a1, a2, . . . ⟩ = ⟨b1, b2, . . . ⟩. Repetition of the argument gives a1 = b1, and so by
induction, an = bn ∀ n.
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1.5 Irrational numbers

We have shown that any infinite simple continued fraction represents an irrational num-
ber. Conversely, if we begin with an irrational number ξ, or ξ0, we can expand it into an
infinite simple continued fraction. To do this we define a0 = [ξ0], ξ1 = 1/(ξ0 − a0) and
next a1 = [ξ1], ξ2 = 1/(ξ1 − a1), and so by an inductive definition,

ai = [ξi], ξi+1 =
1

ξi − ai
(7)

The ai are integers by definition, and the ξi are all irrational since the irrationality of ξ1
is implied by that of ξ0, that of ξ2 by that of ξ1, and so on. Furthermore, ai ≥ 1 for i ≥ 1
because ai−1 = [ξi−1] and the fact that ξi−1 is irrational implies that

ai−1 < ξi−1 < ai−1 + 1, 0 < ξi−1 − ai−1 < 1,

ξi =
1

ξi−1 − ai−1

> 1, ai = [ξi] ≥ 1

Theorem 9. With ξi as defined in equation (7), we have

⟨a0, a1, . . . ⟩ = ⟨a0, a1, a2, . . . , an−1, ξn⟩ = ξ and ξn = ⟨an, an+1, an+2, . . . ⟩

Proof. With repeated application of equation (7) in the form ξi = ai + 1/ξi, we get

ξ = ξ0 = a0 +
1

ξ1
= ⟨a0, ξ1⟩

=

〈
a0, a1 +

1

ξ2

〉
= ⟨a0, a1, ξ2⟩

=

〈
a0, a1, . . . , an−2, an−1 +

1

ξn

〉
= ⟨a0, a1, . . . , an−1, ξn⟩

Now, to prove that ξ = ξ0 is the value of the infinite continued fraction ⟨a0, a1, a2 . . . ⟩
determined by the integers ai, we use Theorem 3 to write

ξ = ⟨a0, a1, . . . , an−1, ξn⟩ =
ξnhn−1 + hn−2

ξnkn−1 + kn−2

(8)

with hi and ki as defined in equations (6). By Theorem 5, we have

ξ − rn−1 =
ξnhn−1 + hn−2

ξnkn−1 + kn−2

− hn−1

kn−1

=
−(hn−1kn−2 − hn−2kn−1)

kn−1(ξnkn−1 + kn−2)
=

(−1)n−1

kn−1(ξnkn−1 + kn−2)

As n → ∞,
(−1)n−1

kn−1(ξnkn−1 + kn−2)
→ 0 because {kn} is increasing and ξn > 0. Hence,

ξ − rn−1 → 0 as n → ∞ and then by Definition 1, we have

ξ = lim
n→∞

rn = lim
n→∞

⟨a0, a1, . . . , an⟩ = ⟨a0, a1, a2, . . . ⟩ = ⟨a0, a1, a2, . . . , an−1, ξn⟩

With repeated application of equation (7) for ξn, we get the other equation.
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1.6 Approximations to irrational numbers

Continuing to use the notation of the preceding sections, we now show that the conver-
gents rn = hn/kn form a sequence of “best” rational approximations to the irrational
number ξ.

Theorem 10. We have for n ≥ 0,∣∣∣ξ − hn

kn

∣∣∣ < 1

knkn+1

and |ξkn − hn| <
1

kn+1

Proof. Using the result

ξ − rn−1 =
(−1)n−1

kn−1(ξnkn−1 + kn−2)

(where rn = hn/kn) from the proof of Theorem 9 and also using equation (7), we have∣∣∣ξ − hn

kn

∣∣∣ = 1

kn(ξn+1kn + kn−1)
<

1

kn(an+1kn + kn−1)

Now using equation (6), we get ∣∣∣ξ − hn

kn

∣∣∣ < 1

knkn+1

Multiplying this inequality by kn, we get the second inequality.

Theorem 11. The convergents hn/kn are successively closer to ξ, i.e.,∣∣∣ξ − hn

kn

∣∣∣ < ∣∣∣ξ − hn−1

kn−1

∣∣∣
In fact the stronger inequality |ξkn − hn| < |ξkn−1 − hn−1| holds.
Proof. We use kn−1 ≤ kn to write∣∣∣ξ − hn

kn

∣∣∣ = 1

kn
|ξkn − hn| <

1

kn
|ξkn−1 − hn−1|

≤ 1

kn−1

|ξkn−1 − hn−1| =
∣∣∣ξ − hn−1

kn−1

∣∣∣
To prove the stronger inequality, we observe that by equation (7), an + 1 > ξn and
therefore by equation (6), we have

ξnkn−1 + kn−2 < (an + 1)kn−1 + kn−2

= kn + kn−1 ≤ an+1kn + kn−1 = kn+1

This inequality along with the inequality

ξ − hn−1

kn−1

=
(−1)n−1

kn−1(ξnkn−1 + kn−2)

gives the following inequality∣∣∣ξ − hn

kn

∣∣∣ = 1

kn−1(ξnkn−1 + kn−2)
>

1

kn−1kn+1

Multiplying by kn−1 and using Theorem 10, we get

|ξkn−1 − hn−1| >
1

kn+1

> |ξkn − hn|
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This means that the convergent hn/kn is the best approximation to ξ of all the rational
fractions with denominator kn or less. The following theorem states this in a different
way.

Theorem 12. If a/b is a rational number with b > 0 such that∣∣∣ξ − a

b

∣∣∣ < ∣∣∣ξ − hn

kn

∣∣∣
for some n ≥ 1, then b > kn. In fact if |ξb− a| < |ξkn − hn| for n ≥ 0, then b ≥ kn+1.

Proof. First we prove that the second part of the theorem implies the first. Suppose that
the first part is false so that there is a rational a/b with∣∣∣ξ − a

b

∣∣∣ < ∣∣∣ξ − hn

kn

∣∣∣ and b ≤ kn

Taking the product of these two inequalities, we get

|ξb− a| < |ξkn − hn|

But the second part of the theorem says that this implies b ≥ kn+1, so we have a contra-
diction, since kn < kn+1 for n ≥ 1.

To prove the second part of the theorem we proceed again by indirect argument,
assuming that |ξb − a| < |ξkn − hn| and b < kn+1. We consider the following linear
equations in x and y,

xkn + ykn+1 = b and xhn + yhn+1 = a

By Theorem 5, the determinants of coefficients is ±1, and consequently these equations
have an integral solution x, y. Also, neither x nor y is zero because if x = 0, then
b = ykn+1 =⇒ y > 0 and b ≥ kn+1, in contradiction to b < kn+1. If y = 0, then a = xhn

and b = xkn, and

|ξb− a| = |ξxkn − xhn| = |x||ξkn − hn| ≥ |knξ − hn|

and again we have a contradiction.
Next we prove that x and y have opposite signs. If y < 0, then xkn = b−ykn+1 shows

that x > 0. If y > 0, then b < kn+1 =⇒ b < ykn+1 and hence xkn is negative, whence
x < 0. It can be observed from the proof of Theorem 9 that ξkn − hn and ξkn+1 − hn+1

have opposite signs and hence x(ξkn−hn) and y(ξkn+1−hn+1) have the same signs. Also
from the linear equations defining x and y, we get ξb−a = x(ξkn−hn)+y(ξkn+1−hn+1).
Since the two terms on the right have the same sign, so we have

|ξb− a| = |x(ξkn − hn) + y(ξkn+1 − hn+1)|
= |x(ξkn − hn)|+ |y(ξkn+1 − hn+1)|
> |x(ξkn − hn)| = |x||ξkn − hn| ≥ |ξkn − hn|

which is a contradiction.

Theorem 13. Let ξ be an irrational number. If there is a rational number a/b with b ≥ 1
such that ∣∣∣ξ − a

b

∣∣∣ < 1

2b2

then a/b equals one of the convergents of the simple continued fraction expansion of ξ.
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Proof. It suffices to prove the result for the case (a, b) = 1. Let the convergents of
the simple continued fraction expansion of ξ be hj/kj and suppose that a/b is not a
convergent. The nested inequality kn ≤ b < kn+1 determine an integer n. For this n, the
inequality |ξb− a| < |ξkn − hn| is impossible due to Theorem 12. Therefore,

|ξkn − hn| ≤ |ξb− a| < 1

2b
=⇒

∣∣∣ξ − hn

kn

∣∣∣ < 1

2bkn

Since a/b ̸= hn/kn and bhn − akn ̸∈ Z, so

1

bkn
≤ |bhn − akn|

bkn
=

∣∣∣hn

kn
− a

b

∣∣∣ ≤ ∣∣∣ξ − hn

kn

∣∣∣+ ∣∣∣ξ − a

b

∣∣∣ < 1

2bkn
+

1

2b2

which gives b < kn, a contradiction.

Theorem 14. The nth convergent of 1/x is the reciprocal of the (n− 1)th convergent of
x if x is any real number greater than 1.

Proof. We have, x = ⟨a0, a1, . . . ⟩ and 1/x = ⟨0, a0, a1, . . . ⟩. If hn/kn and h′
n/k

′
n are the

convergents for x and 1/x respectively, then using equations (6),

h′
0 = 0, h′

1 = 1, k0 = 1 and h′
n = an−1h

′
n−1 + h′

n−2, kn−1 = an−1kn−2 + kn−3

Also,

k′
0 = 1, k′

1 = a0, h0 = a0 and k′
n = an−1k

′
n−1 + k′

n−2, hn−1 = an−1hn−2 + hn−3

The theorem then follows from induction.

1.7 Periodic continued fractions

An infinite simple continued fraction ⟨a0, a1, a2, . . . ⟩ is said to be periodic if there is an
integer n such that ar = an+r for all sufficiently large r. Thus a periodic continued
fraction can be written in the form

⟨b0, b1, b2, . . . , bj, a0, a1, a2, . . . , an−1, . . . , a0, a1, a2, . . . , an−1, . . . ⟩

= ⟨b0, b1, b2, . . . , bj, a0, a1, a2, . . . , an−1⟩ (9)

where the bar over a0, a1, a2, . . . , an−1 indicates that this block of integers is repeated
indefinitely.

Theorem 15. Any periodic simple continued fraction is a quadratic irrational number,
and conversely.

Proof. Let us write ξ = ⟨b0, b1, b2, . . . , bj, a0, a1, a2, . . . , an−1⟩ and θ = ⟨a0, a1, a2, . . . , an−1⟩.
Thus,

θ = ⟨a0, a1, a2, . . . , an−1⟩ = ⟨a0, a1, a2, . . . , an−1, θ⟩

Then by Theorem 3, we have

θ =
θhn−1 + hn−2

θkn−1 + kn−2

10



which is a quadratic equation in θ. Hence θ is either a quadratic irrational number or a
rational number, but it cannot be rational due to Theorem 7. Now, ξ can be written in
terms of θ as

ξ = ⟨b0, b1, . . . , bj, θ⟩ =
θm+m′

θq + q′

where m′/q′ and m/q are the last two convergents to ⟨b0, b1, . . . , bj⟩. But θ is a quadratic

irrational, i.e., θ is of the form
a+

√
b

c
, and hence ξ is of a similar form.

To prove the converse, let us begin with any quadratic irrational ξ or ξ0, of the form

ξ = ξ0 =
a+

√
b

c
with integers a, b, c, b > 0, c ̸= 0 and b not a perfect square (since ξ is

irrational). We multiply the numerator and denominator by |c| to get

ξ0 =
ac+

√
bc2

c2
or ξ0 =

−ac+
√
bc2

−c2

according as c is positive or negative. Thus, we can write ξ in the form

ξ0 =
m0 +

√
d

q0

where q0 | d−m2
0 ,d,m0, q are integers, q0 ̸= 0 and d not a perfect square. By writing ξ0 in

this form we can get a simple formulation of continued fraction expansion ⟨a0, a1, a2, . . . ⟩.
We shall prove that the equations

ai = [ξi], ξi =
mi +

√
d

qi

mi+1 = aiqi −mi, qi+1 =
d−m2

i+1

qi
(10)

define infinite sequences of integers mi, qi, ai and irrrationals ξi in such a way that equa-
tions (7) hold, and hence we will have the continued fraction expansion of ξ0.

We start with ξ0,m0, q0 as above and let a0 = [ξ0]. If ξi,mi, qi, ai are known, then we

take ξi+1 =
mi+1 +

√
d

qi+1

,mi+1 = aiqi −mi, qi+1 =
d−m2

i+1

qi
, ai+1 = [ξi+1].

Now we use induction to prove that the mi and qi are integers such that qi ̸= 0
and qi | d − m2

0. This holds for i = 0. If it is true at the ith stage, we observe that
mi+1 = aiqi −mi is an integer. Then the equation

qi+1 =
d−m2

i+1

qi
=

d− (aiqi −mi)
2

qi
=

d−m2
i

qi
+ 2aimi − a2i qi

implies that qi+1 is an integer. Also, qi+1 ̸= 0, because if not, then we would have

d = m2
i+1, but d is not a perfect square. Finally, we have qi =

d−m2
i+1

qi+1

, which gives

qi+1 | d−m2
i+1. Now we verify that equations (7) hold. We have

ξi − ai =
mi +

√
d

qi
− ai =

√
d− (aiqi −mi)

qi
=

√
d−mi+1

qi

=
d−m2

i+1

qi(
√
d+mi+1)

=
qiqi+1

qi(
√
d+mi+1)

=
1

mi+1+
√
d

qi+1

=
1

ξi+1

11



and hence equations (7) hold and so we have proved that ξ0 = ⟨a0, a1, a2, . . . ⟩ with ai as
defined in equation (10).

We denote by ξ′i, the conjugate of ξi, i.e.,

ξ′i =
mi −

√
d

qi

Taking conjugates in equation (8), we get

ξ′0 =
ξ′nhn−1 + hn−2

ξ′nkn−1 + kn−2

Solving this equation for ξ′n, we have

ξ′n = −kn−2

kn−1

(
ξ′0 − hn−2/kn−2

ξ′0 − hn−1/kn−1

)
As n tends to infinity, both hn−1/kn−1 = rn−1 and hn−2/kn−2 = rn−2 tend to ξ0, which is
different from ξ′0 and hence the fraction in parenthesis tends to 1. Thus for sufficiently
large n, say n > N where N is fixed, the fraction in parentheses is positive, and ξ′n is
negative. But ξn is positive for n ≥ 1 and hence ξn − ξ′n > 0 for n > N . Therefore, using
equation (10), we have 2

√
d/qn > 0 and hence qn > 0 for n > N . It also follows from

equation (10) that

qnqn+1 = d−m2
n+1 ≤ d, qn ≤ qnqn+1 ≤ d

m2
n+1 < m2

n+1 + qnqn+1 = d, |mn+1| <
√
d

for n > N . Since d is a fixed positive integer, we conclude that qn and mn+1 can assume
only a fixed number of possible values for n > N . Hence the ordered pairs (mn, qn) can
assume only a fixed number of possible pair values for n > N , and so there exist distinct
integers j and k such that mj = mk and qj = qk. WLOG, assume j < k. Then equations
(10) give ξj = ξk and hence

ξ0 = ⟨a0, a1, . . . , aj−1, aj, aj+1, . . . , ak−1⟩

i.e., any quadratic irrational can be written as a periodic simple continued fraction.

Definition 2. Infinite continued fractions of the form ⟨a0, a1, . . . , an⟩ are called purely
periodic continued fractions.

Theorem 16. The continued fraction expansion of the quadratic irrational number ξ is
purely periodic if and only if ξ > 1 and −1 < ξ′ < 0, where ξ′ denotes the conjugate of ξ.

Proof. Consider an irrational number ξ = ξ0 such that ξ > 1 and −1 < ξ′ < 0. Taking
conjugates in equation (7), we get

1

ξ′i+1

= ξ′i − ai (11)

Now ai ≥ 1 for all i ≥ 0 (even for i = 0 since ξ0 > =⇒ a0 = [ξ0] ≥ 1). Since −1 < ξ′0 < 0,
and if ξ′i < 0, then 1/ξ′i+1 < −1, and we have −1 < ξ′i+1 < 0. Therefore, by induction
hypothesis, −1 < ξ′i < 0 for all i ≥ 0. Hence, equation (11) gives

0 < − 1

ξi+1

− ai < 1 =⇒ ai < − 1

ξi+1

< ai + 1 =⇒ ai =

[
− 1

ξi+1

]
12



Now ξ = ξ0 is a quadratic irrational and hence by Theorem 15 has a periodic simple
continued fraction expansion, i.e., ξj = ξk for some integers j and k with 0 < j < k.
Then we have ξ′j = ξ′k and

aj−1 =

[
− 1

ξ′j

]
=

[
− 1

ξ′k

]
= ak−1

ξj−1 = aj−1 +
1

ξj
= ak−1 +

1

ξk
= ξk−1

Thus, ξj = ξk =⇒ ξj−1 = ξk−1. A j-fold iteration of this implication gives us

ξ = ξ0 = ξk−j = ⟨a0, a1, . . . , ak−j−1⟩

i.e., the continued fraction expansion of a quadratic irrational number is purely periodic.
To prove the converse, we assume that ξ is purely periodic, say ξ = ⟨a0, a1, . . . , an−1⟩,

where ai’s are positive integers. Then ξ > a0 ≥ 1 and by equation (8), we have

ξ = ⟨a0, a1, . . . , an−1, ξ⟩ =
ξhn−1 + hn−2

ξkn−1 + kn−2

Thus ξ is a root of the quadratic equation

f(x) = x2hn−2 + x(kn−2 − hn−1)− hn−2 = 0

which has two roots ξ and ξ′. Since ξ > 1, we only need to prove that f(x) has a root
between −1 and 0 in order to establish that −1 < ξ < 0. We shall do this by showing
that f(−1) and f(0) have opposite signs. We observe that f(0) = −hn−2 < 0, since
ai > 0 for i ≥ 0. Also for n ≥ 1, we have

f(−1) = kn−1 − kn−2 + hn−1 − hn−2

= (hn−1 + kn−1)− (hn−2 + kn−2)

= (an−1hn−2 + hn−3 + an−1kn−2 + kn−3)− (hn−2 + kn−2)

= (hn−2 + kn−2)(an−1 − 1) + (hn−3 + kn−3)

≥ hn−3 + kn−3 > 0

and hence we are done.

1.8 Continued fraction expansions of square roots

We want the continued fraction expansion of
√
d for a positive integer d not a perfect

square. We start with the closely related irrational number
√
d + [

√
d] = ξ = ξ0, say.

Then clearly, ξ > 1 and −1 < ξ′ = [
√
d] − d < 0 and therefore by Theorem 16, the

continued fraction expansion of ξ is purely periodic, say

ξ =
√
d+ [

√
d] = ⟨a0, a1, . . . , ar−1⟩ = ⟨a0, a1, a2, . . . , ar−1, a0⟩ (12)

We can suppose that we have chosen r to be the smallest integer for which ξ has an
expansion of the form as in equation (12). We note that ξi = ⟨ai, ai+1, . . . ⟩ is purely
periodic for all i and that ξr = ξ2r = · · · . Also, ξi ̸= ξ0 for all i = 1, 2, . . . , r − 1, because
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otherwise there would be a shorter period. Therefore, ξi = ξ0 if and only if i is of the
form jr for some j.

Now we can start with ξ0 =
√
d + [

√
d], q0 = 1,m0 = [

√
d] in equation (10) because

1 | (d− [
√
d])2. Thus, for all j ≥ 0,

mjr +
√
d

qjr
= ξjr = ξ0 =

m0 +
√
d

q0
= [

√
d] +

√
d

=⇒ mjr − qjr[
√
d] = (qjr − 1)

√
d (13)

Since the left hand side of equation (13) is rational, so for the right hand side to be
rational, we should have qjr = 1 . Moreover qi = 1 for no other values of the subscript i.

For qi = 1, ξi = mi +
√
d, but ξi has a purely periodic expansion and so by Theorem 16,

we have

−1 < ξ′i < d =⇒ −1 < mi −
√
d < 0 =⇒

√
d− 1 < mi <

√
d =⇒ mi = [

√
d]

Now we establish that qi = −1 does not hold for any i. Suppose qi = −1 for some i.
Then this implies that ξi = −mi −

√
d and so by Theorem 16, we have

−1 < ξ′i < d =⇒ −1 < −mi +
√
d < 0 =⇒

√
d < mi < −

√
d− 1

which is impossible.

Noting that a0 = [ξ0] =
[√

d+ [
√
d]
]
= 2[

√
d], we now turn to the case ξ =

√
d (don’t

confuse this ξ with ξ =
√
d+ [

√
d] in equation (12)). Using equation (12), we have

√
d = −[

√
d] +

(√
d+ [

√
d]
)

= −[
√
d] + ⟨2[

√
d], a1, a2, . . . , ar−1, a0⟩

= ⟨[
√
d], a1, a2, . . . , ar−1, a0⟩

with a0 = 2[
√
d] as above.

Applying equations (10) to
√
d+ [

√
d] with q0 = 1,m0 = [

√
d], we have

a0 = 2[
√
d],m1 = [

√
d], q1 = d− [

√
d]2

But we can also apply equations (10) to
√
d with q0 = 1,m0 = 0, to get

a0 = [
√
d],m1 = [

√
d], q1 = d− [

√
d]2

We see that though the values of a0 are different, but the values of m1 and q1 are the
same in both cases. Since ξi = (mi +

√
d)/qi, we see that further application of equation

(10) yields the same values of ai,mi, qi in both the cases, i.e., the expansions of
√
d+[

√
d]

and
√
d differ only in the values of a0 and m0.

Incidentally we have proved the following theorem.

Theorem 17. If the positive integer d is not a perfect square, the simple continued
fraction expansion of

√
d has the form

√
d = ⟨a0, a1, a2, . . . , ar−1, 2a0⟩

with a0 =
√
d. Furthermore, with ξ0 =

√
d, q0 = 1,m0 = 0 in equations (10), we have

qi = 1 if and only if r | i and qi = −1 holds for no subscript i. Here r denotes the length
of the shortest period in the expansion of

√
d.
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1.9 A numerical example

Example 1: Expand
√
5 as an infinite simple continued fraction.

Solution: To derive the continued fraction expansion of
√
5, subtract the floor, invert

what is left, and repeat:

√
5 = 2 + (

√
5− 2) = 2 +

1√
5 + 2

= 2 +
1

4 + (
√
5− 2)

= 2 +
1

4 + 1√
5+2

and the process will repeat to give
√
5 = ⟨2, 4, 4, 4, . . . ⟩ = ⟨2, 4⟩

□

2 Pell’s equation

The equation x2−dy2 = N , with given integers d and N and unknowns x and y, is usually
called Pell’s equation. If d is negative, it can have only a finite number of solutions. If
d is a perfect square, say d = a2, the equation reduces to (x − ay)(x + ay) = N and
again there is only a finite number of solutions. The most interesting case of the equation
arises when d is a positive integer not a perfect square. For this case, simple continued
fractions are very useful.

We expand
√
d into a simple continued fraction as in Theorem 17, with convergents

rn = hn/kn, and with qn defined by equations (10) with ξ0 =
√
d, q0 = 1,m0 = 0.

Theorem 18. If d is a positive integer not a perfect square, then

h2
n − dk2

n = (−1)n−1qn+1

for all integers n ≥ −1.

Proof. Using equations (8) and (10), we have

√
d = ξ0 =

ξn+1hn + hn−1

ξn+1kn + kn−1

=

(
mn+1+

√
d

qn+1

)
hn + hn−1(

mn+1+
√
d

qn+1

)
kn + kn−1

=
(mn+1 +

√
d)hn + qn+1hn−1

(mn+1 +
√
d)kn + qn+1kn−1

This gives
(mn+1kn + qn+1kn−1 − hn)

√
d = mn+1hn + qn+1hn−1 − dkn (14)

Since the right hand side of equation (14) is rational, so for the right hand side to be
rational, we should have

mn+1kn + qn+1kn−1 − hn = 0

and hence,
mn+1hn + qn+1hn−1 − dkn = 0

Then, from both these equations, we have

mn+1 =
hn − qn+1kn−1

kn
=

dkn − qn+1hn−1

hn

This gives,
h2
n − dk2

n = (hnkn−1 − hn−1kn)qn+1 = (−1)n−1qn+1

using Theorem 5 in the last step, and this equation is true for all integers n ≥ 1.
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We have the following corollary of Theorem 18.

Corollary 18.1. Taking r as the length of the period of the expansion of
√
d, as in

Theorem 17, we have for n ≥ 0,

h2
nr−1 − dk2

nr−1 = (−1)nrqnr = (−1)nr

With n even, this gives infinitely many solutions of x2 − dy2 = 1 in integers, provided d
is positive and not a perfect square.

It can be seen that Theorem 18 gives us solutions of Pell’s equation for certain values
of N . In particular, Corollary 13.1 gives infinitely many solutions of x2 − dy2 = 1 by the
use of even values of nr. Of course if r is even, all values of nr are even. If r is odd,
Corollary 13.1 gives infinitely many solutions of x2−dy2 = −1 by the use of odd integers
n ≥ 1. Apart from the trivial solutions x = ±1, y = 0 of x2 − dy2 = 1, all solutions
of x2 − dy2 = N fall into sets of four by all combinations of signs ±x,±y. Hence it is
sufficient to discuss the positive solutions x > 0, y > 0.

2.1 Convergents of
√
d and solutions of Pell’s equation

Theorem 19. Let d be a positive integer not a perfect square, and let the convergents
to the continued fraction expansion of

√
d be rn = hn/kn. Let the integer N satisfy

|N | <
√
d. Then any positive solution x = s, y = t of the equation x2 − dy2 = N with

(s, t) = 1 satisfies s = hn, t = kn for some positive integer n.

Proof. Let E and M be positive integers such that (E,M) = 1 and E2−ρM2 = σ, where√
ρ is irrational and 0 < σ <

√
ρ with σ, ρ ∈ R, not necessarily integers. Then

E

M
−√

p =
σ

M(E +M
√
ρ)

and hence,

0 <
E

M
−√

ρ <

√
ρ

M(E +M
√
ρ)

=
1

M2
(

E
M

√
ρ
+ 1

)
Also,

0 <
E

M
−√

ρ =⇒ E

M
√
ρ
> 1

and therefore, ∣∣∣ E
M

−√
ρ
∣∣∣ < 1

2M2

By Theorem 13, E/M is a convergent in the continued fraction expansion of ρ.
If N > 0, we take σ = N, ρ = d,E = s,M = t and the theorem holds in this case. In

N < 0, then t2 − (1/d)s2 = −N/d and we take σ = −N/d, ρ = 1/d, E = t,M = s. We
find that t/s is a convergent in the expansion of 1/

√
d. Then by Theorem 14, s/t is a

convergent in the expansion of
√
d.

As a result of the theorems 17,18 and 19, we have the following theorem.

16



Theorem 20. All positive solutions of x2 − dy2 = ±1 are to be found among x =
hn, y = kn, where hn/kn are the convergents of the expansion of

√
d. If r is the period

of the expansion of
√
d as in Theorem 17, and if r is even, then x2 − dy2 = −1 has no

solution, and all positive solutions of x2 − dy2 = 1 are given by x = hnr−1, y = knr−1

for n = 1, 2, 3, . . . . On the other hand, if r is odd, then x = hnr−1, y = knr−1 give all
positive solutions of x2 − dy2 = −1 by use of n = 1, 3, 5, . . . and all positive solutions of
x2 − dy2 = 1 by use of n = 2, 4, 6, . . . .

The sequence of pairs (h0, k0), (h1, k1), (h2, k2), . . . will include all positive solutions of
x2−dy2 = 1. Also since a0 = [

√
d] > 0, so the sequence h0, h1, h2, . . . is strictly increasing.

If (x1, y1) is the first solution that appears, then for every other solution (x, y), x > x1

and hence y > y1 also. Having found this least positive solution by means of continued
fractions, we can find all the remaining positive solutions by a simpler method, as the
following theorem suggests.

Theorem 21. If (x1, y1) is the least positive integer solution of x2 − dy2 = 1, where d
is a positive integer not a perfect square, then all positive integer solutions are given by
(xn, yn) for n = 1, 2, 3. . . . , defined by xn + yn

√
d = (x1 + y1

√
d)n.

Proof. First we establish that (xn, yn) is a solution. Since xn + yn
√
d = (x1 + y1

√
d)n, so

xn − yn
√
d = (x1 − y1

√
d)n. Hence we can write

x2
n − dy2n = (xn − yn

√
d)(xn + yn

√
d)

= (x1 − y1
√
d)n(x1 + y1

√
d)n = (x2

1 − dy21)
n = 1

Suppose there is a positive integer solution (s, t) that is not in the collection {(xn, yn)}.
Since both x1+ y1

√
d and s+ t

√
d are greater than 1, there must be some integer m such

that
(x1 + y1

√
d)m ≤ s+ t

√
d < (x1 + y1

√
d)m+1

. We cannot have (x1+y1
√
d)m = s+t

√
d, because this would imply xm+ym

√
d = s+t

√
d

so that xm = s and ym = t. So we have,

(x1 + y1
√
d)m < s+ t

√
d < (x1 + y1

√
d)m+1

Multiplying this inequality by (x1 − y1
√
d)m = (x1 + y1

√
d)−m, we get

1 < (s+ t
√
d)(x1 − y1

√
d)m < x1 + y1

√
d

We define integers a and b such that a+ b
√
d = (s+ t

√
d)(x1 − y1

√
d)m. Then we have

a2 − db2 = (s2 − dt2)(x2
1 − dy21)

m = 1

So, (a, b) is a solution of x2 − dy2 = 1 such that 1 < a + b
√
d < x1 + y1

√
d. But then,

0 < (a+ b
√
d)−1 and hence 0 < a− b

√
d < 1. Now we have

a =
1

2
(a+ b

√
d) +

1

2
(a− b

√
d) >

1

2
+ 0 > 0

and

b
√
d =

1

2
(a+ b

√
d)− 1

2
(a− b

√
d >

1

2
− 1

2
= 0

Therefore, (a, b) is a positive integer solution. Therefore, a > x1, b > y1, which contradicts
a + b

√
d < x1 + y1

√
d. Therefore, all positive integers solutions are given by (xn, yn) for

n = 1, 2, 3, . . . , with xn and yn defined as above.
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Theorem 22. If x2 − dy2 = −1 is solvable, and (x1, y1) is the smallest positive solution.
Then (x2, y2) defined by x2 + y2

√
d = (x1 + y1

√
d)2 is the smallest positive solution of

x2 − dy2 = 1.

Proof. Assume, to the contrary, that (x′
2, y

′
2) defined by x′

2 + y′2
√
d = (x1 + y1

√
d)2 is a

positive integer solution of x2 − dy2 = 1 and y′2 < y2. Define x′
1, y

′
1 such that

x′
1 + y′1

√
d =

x′
2 + y′2

√
d

x1 + y1
√
d
=

(x′
2 + y′2

√
d)(x1 − y1

√
d)

x2
1 − dy21

Using x2
1 − dy21 = −1, we get

x′
1 + y′1

√
d = (x′

2 + y′2
√
d)(y1

√
d− x1) = (dy1y

′
2 − x1x

′
2) + (x′

2y1 − x1y
′
2)
√
d

and so x′
1 = dy1y

′
2−x1x

′
2, y

′
1 = x′

2y1−x1y
′
2, which turns out to be a solution of x2−dy2 = 1

and smaller than (x′
2, y

′
2), a contradiction.

2.2 A numerical example

Example 2: Find the least positive integer solution of x2 − 73y2 = −1 (if it exists) and
of x2 − 73y2 = 1, given that

√
73 = ⟨8, 1, 1, 5, 5, 1, 1, 16⟩.

Solution: Since the period of this continued fraction expansion is 7, an odd number, we
know from Theorem 20 that the equation x2 − 73y2 = −1 has solutions. Moreover, the
least positive solution is x = h6, y = k6 from the convergent r6 = h6/k6. Using equations
(6), we see that the convergents are

r0 = 8/1, r1 = 9/1, r2 = 17/2, r3 = 94/11, r4 = 487/57, r5 = 561/68, r6 = 1068/125

Therefore, the least positive integer solution of x2 − 73y2 = −1 is x = 1068, y = 125. To
get the least positive integer solution of x2 − 73y2 = 1, we use Theorem 22 to calculate
x and y equating the rational and irrational parts of

x+ y
√
73 = (1068 + 125

√
73)2

The values of x and y are 2281249 and 267000 respectively, which is the least positive
integer solution of x2 − 73y2 = 1. □
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