Continued fractions and Pell's equation

Nirjhar Nath nirjhar@cmi.ac.in

These are my notes of a reading project on Continued fractions and Pell's equation under Dr. Rupam Barman (website) of IIT Guwahati. The book that I used throughout is "An Introduction to the Theory of Numbers" by Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery.

Contents

1	Cor	tinued fractions	2
	1.1	Finite continued fractions	2
	1.2	The Euclidean algorithm	2
	1.3	Uniqueness	3
	1.4	Infinite continued fractions	4
	1.5	Irrational numbers	7
	1.6	Approximations to irrational numbers	8
	1.7	Periodic continued fractions	10
	1.8	Continued fraction expansions of square roots	13
	1.9	A numerical example	15
2	Pell's equation		
	2.1	Convergents of \sqrt{d} and solutions of Pell's equation	16
	2.2	A numerical example	18

1 Continued fractions

1.1 Finite continued fractions

We shall describe the function

$$\langle x_0, x_1, \dots, x_j \rangle = x_0 + \frac{1}{x_1 + \frac{1}{x_2 + \dots + \frac{1}{x_{j-1} + \frac{1}{x_j}}}}$$

in j+1 variables $x_0, x_1, \ldots, x_j \in \mathbb{R}$ as a *finite continued fraction*, or, when there is no risk of ambiguity, simply as a *continued fraction*. Such a finite continued fraction is called *simple* if all the x_i 's are integers. It is obvious that

$$\langle x_0, x_1, \dots, x_j \rangle = x_0 + \frac{1}{\langle x_1, \dots, x_j \rangle} = \left\langle x_0, x_1, \dots, x_{j-2}, x_{j-1} + \frac{1}{x_j} \right\rangle$$

Below we see the simple continued fraction expansion of rational numbers.

1.2 The Euclidean algorithm

Given any rational number u_0/u_1 so that $(u_0, u_1) = 1$ and $u_1 > 0$, by Euclidean algorithm, we have

$$u_{0} = u_{1}a_{0} + u_{2}, \qquad 0 < u_{2} < u_{1}$$

$$u_{1} = u_{2}a_{1} + u_{3}, \qquad 0 < u_{3} < u_{2}$$

$$u_{2} = u_{3}a_{2} + u_{4}, \qquad 0 < u_{4} < u_{3}$$

$$\dots \dots \dots$$

$$u_{j-1} = u_{j}a_{j-1} + u_{j+1}, \qquad 0 < u_{j+1} < u_{j}$$

$$u_{j} = u_{j+1}a_{j}$$
(1)

We write $\xi_i = u_i/u_{i+1}$ for all values in the range $0 \le i \le j$, the equations (1) become

$$\xi_i = a_i + \frac{1}{\xi_{i+1}}, \quad 0 \le i \le j - 1; \quad \xi_j = a_j$$
 (2)

Taking the first two of the equations of (2), i.e. those for which i = 0 and i = 1, and eliminate ξ_1 , we have

$$\xi_0 = a_0 + \frac{1}{a_1 + \frac{1}{\xi_2}}$$

Here we replace ξ_2 by its value from (2) and then continue replacing ξ_3, ξ_4, \ldots to get

$$\frac{u_0}{u_1} = \xi_0 = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots + \frac{1}{a_{j-1} + \frac{1}{a_j}}}} = \langle a_0, a_1, \dots, a_j \rangle$$
(3)

This is a continued fraction expansion of $\xi_0 = u_0/u_1$. The integers a_i are called the *partial quotients* since they are the quotients in the repeated application of the division algorithm in equations (1).

1.3 Uniqueness

We saw that any such fraction as 51/22 can be expanded into a simple continued fraction, $51/22 = \langle 2, 3, 7 \rangle$. It can be verified that 51/22 can also be expressed as $\langle 2, 3, 6, 1 \rangle$, but it turns out that these are the only two representations of 51/22. In general, we note that the simple continued fraction expansion (3) has an alternate form,

$$\frac{u_0}{u_1} = \langle a_0, a_1, \dots, a_{j-1}, a_j \rangle = \langle a_0, a_1, \dots, a_{j-1}, a_j - 1, 1 \rangle$$
(4)

The following result establishes that these are the only two simple continued fraction expansions of a fixed rational number.

Theorem 1. If $\langle a_0, a_1, \ldots, a_j \rangle = \langle b_0, b_1, \ldots, b_n \rangle$ where these finite continued fractions are simple, and if $a_j > 1$ and $b_n > 1$, then j = n and $a_i = b_i$ for $i = 1, 2, \ldots, n$.

Proof. We write y_i for the continued fraction $\langle b_i, b_{i+1}, \ldots, b_n \rangle$ and observe that

$$y_{i} = \langle b_{i}, b_{i+1}, \dots, b_{n} \rangle = b_{i} + \frac{1}{\langle b_{i+1}, b_{i+2}, \dots, b_{n} \rangle} = b_{i} + \frac{1}{y_{i+1}}$$
(5)

Thus we have $y_i > b_i$ and $y_i > 1$ for i = 1, 2, ..., n - 1, and $y_n = b_n > 1$. Consequently, we have $b_i = [y_i]$ for all values of i in the range $0 \le i \le n$. Using the notation of equation (3), we have $y_0 = \xi_0$. We have, $\xi_i = u_i/u_{i+1} > 1$ for all values of i > 0 and so $a_i = [\xi_i]$ for $0 \le i \le j$. Now, $b_0 = [y_0] = [\xi_0] = a_0$. By equations (2) and (5), we have

$$\frac{1}{\xi_1} = \xi_0 - a_0 = y_0 - b_0 = \frac{1}{y_1} \implies \xi_1 = y_1, \quad a_1 = [\xi_1] = [y_1] = b_1$$

We use induction as follows. Assume that $\xi_k = y_k$ and $a_k = b_k$. We use equations (2) and (5) again to write

$$\frac{1}{\xi_{k+1}} = \xi_k - a_k = y_k - b_k = \frac{1}{y_{k+1}} \implies \xi_{k+1} = y_{k+1},$$
$$a_{k+1} = [\xi_{k+1}] = [y_{k+1}] = b_{k+1}$$

It must also follow that the continued fractions have the same length, i.e., that j = n, because if j < n then by equation (2), we have $\xi_j = a_j$ and by equation (5), we have $y_j > b_j$ which contradicts the fact that $\xi_j = y_j, a_j = b_j$. Similar argument holds for j > n, and thus j = n.

Theorem 2. Any finite simple continued fraction represents a rational number. Conversely, any rational number can be expressed as a finite simple continued fraction, and in exactly two ways.

Proof. The first assertion can be established by induction on the number of terms in the continued fraction, by use of the formula

$$\langle a_0, a_1, \dots, a_j \rangle = a_0 + \frac{1}{\langle a_1, a_2, \dots, a_j \rangle} = \frac{a_0(\langle a_1, a_2, \dots, a_j \rangle) + 1}{\langle a_1, a_2, \dots, a_j \rangle}$$

The second assertion follows from the development of u_0/u_1 into a finite simple continued fraction in Section 1.2, together with equation (4) and Theorem 1.

1.4 Infinite continued fractions

Let a_0, a_1, a_2, \ldots be an infinite sequence with $a_0 \in \mathbb{Z}$ and $a_1, a_2, \ldots \in \mathbb{Z}^+$. We define two sequences of integers $\{h_n\}$ and $\{k_n\}$ inductively as follows:

$$h_{-2} = 0, h_{-1} = 1, h_i = a_i h_{i-1} + h_{i-2} \text{ for } i \ge 0$$

$$k_{-2} = 1, k_{-1} = 0, k_i = a_i k_{i-1} + k_{i-2} \text{ for } i \ge 0$$
(6)

We note that $k_0 = 1, k_1 = a_1 \ge 1 = k_0, k_2 > k_1, k_3 > k_2$ so that

$$1 = k_0 \le k_1 < k_2 < k_3 < \dots < k_n < \dots$$

Theorem 3. For any $x \in \mathbb{R}^+$,

$$\langle a_0, a_1, \dots, a_{n-1}, x \rangle = \frac{xh_{n-1} + h_{n-2}}{xk_{n-1} + k_{n-2}}$$

Proof. For n = 0, we have the equation

$$x = \frac{xh_{-1} + h_{-2}}{xk_{-1} + k_{-2}}$$

which is true by equations (6). We have,

$$\langle a_0, x \rangle = a_0 + \frac{1}{x} = \frac{xa_0 + 1}{x} = \frac{xh_0 + h_{-1}}{xk_0 + k_{-1}}$$

i.e., the theorem is true for n = 1. We establish the theorem in general by induction. Assuming that the theorem holds for $\langle a_0, a_1, \ldots, a_{n-1}, x \rangle$, we have

$$\langle a_0, a_1, \dots, a_n, x \rangle = \left\langle a_0, a_1, \dots, a_{n-1}, a_n + \frac{1}{x} \right\rangle$$

$$= \frac{(a_n + 1/x)h_{n-1} + h_{n-2}}{(a_n + 1/x)k_{n-1} + k_{n-2}}$$

$$= \frac{x(a_nh_{n-1} + h_{n-2}) + h_{n-1}}{x(a_nk_{n-1} + k_{n-2}) + k_{n-1}}$$

$$= \frac{xh_n + h_{n-1}}{xk_n + k_{n-1}}$$

and hence the theorem is proved.

Theorem 4. If $r_n \stackrel{\text{def}}{=} \langle a_0, a_1, \dots, a_n \rangle \ \forall \ n \ge 0$, then $r_n = h_n/k_n$.

Proof. Using Theorem 3 and equations (6), we have

$$r_n = \langle a_0, a_1, \dots, a_n \rangle = \frac{a_n h_{n-1} + h_{n-2}}{a_n k_{n-1} + k_{n-2}} = \frac{h_n}{k_n}$$

and we are done.

We call $\langle a_0, a_1, \ldots, a_n \rangle = h_n/k_n = r_n$ the n^{th} convergent to the infinite continued fraction $\langle a_0, a_1, a_2, \ldots \rangle$. In the case of a finite simple continued fraction, we similarly call the number $\langle a_0, a_1, \ldots, a_n \rangle$ $(0 \le n \le j)$ the n^{th} convergent to $\langle a_0, a_1, \ldots, a_j \rangle$.

Theorem 5. The following equations hold for $i \ge 1$:

$$h_{i}k_{i-1} - h_{i-1}k_{i} = (-1)^{i-1}$$

$$r_{i} - r_{i-1} = \frac{(-1)^{i-1}}{k_{i}k_{i-1}}$$

$$h_{i}k_{i-2} - h_{i-2}k_{i} = (-1)^{i}a_{i}$$

$$r_{i} - r_{i-2} = \frac{(-1)^{i}a_{i}}{k_{i}k_{i-2}}$$

The fraction h_i/k_i is reduced, i.e., $(h_i, k_i) = 1$.

Proof. The equations (6) imply that $h_{-1}k_{-2} - h_{-2}k_{-1} = 1$. We use induction. Assuming that $h_i k_{i-1} - h_{i-1}k_i = (-1)^{i-1}$ and using equations (6), we have

$$h_{i+1}k_i - h_ik_{i+1} = (a_{i+1}h_i + h_{i-1})k_i - h_i(a_{i+1}k_i + k_{i-1}) = -(h_ik_{i-1} - h_{i-1}k_i) = (-1)^i$$

This proves the first result and dividing this by $k_i k_{i-1}$ and using Theorem 4, we get the second result. The third result is proved below.

$$h_{i}k_{i-2} - h_{i-2}k_{i} = (a_{i}h_{i-1} + h_{i-2})k_{i-2} - h_{i-2}(a_{i}k_{i-1} + k_{i-2})$$
$$= (h_{i-1}k_{i-2} - h_{i-2}k_{i-1})a_{i}$$
$$= (-1)^{i-2}a_{i} = (-1)^{i}a_{i}$$

Dividing the third result by $k_i k_{i-2}$ and using Theorem 4, we get the fourth result. Furthermore, the fraction h_i/k_i is reduced since by the first result, any common factor of h_i and k_i is also a factor of $(-1)^{i-1}$.

Theorem 6. The even convergents r_{2m} increase strictly with m, while the odd convergents r_{2m+1} decrease strictly, and every odd convergent is greater than any even convergent, i.e., the values r_n satisfy the infinite chain of inequalities

$$r_0 < r_2 < r_4 < r_6 < \dots < r_7 < r_5 < r_3 < r_1$$

and every r_{2p} is less than every r_{2q-1} . Furthermore, $\lim_{n\to\infty} r_n$ exists and for every $m \ge 0$,

$$r_{2m} < \lim_{n \to \infty} r_n < r_{2m+1}$$

Proof. Since $a_i > 0$ and $k_i > 0$ for $i \ge 1$ and $i \ge 0$ respectively, thus using the second and fourth results of Theorem 5, we have

$$r_{2m} < r_{2m-1}, r_{2m} < r_{2m+2}$$
 and $r_{2m-1} > r_{2m+1}$

Using these results, we prove that $r_{2p} < r_{2q-1}$ as follows.

$$r_{2p} < r_{2p+2q} < r_{2p+2q-1} \le r_{2q-1}$$

Thus, we have proved the desired infinite chain of inequalities.

The sequence $\{r_{2m}\}$ is monotonically increasing and is bounded above by r_1 , and so $\lim_{m\to\infty} r_{2m}$ exists. Analogously, $\{r_{2m+1}\}$ is monotonously decreasing and is bounded above by r_0 , and so $\lim_{m\to\infty} r_{2m+1}$ also exists. Also, $k_i \ge i \forall i \ge 1$ since

$$1 = k_0 \le k_1 < k_2 < k_3 < \dots < k_n < \dots$$

and so by the second result of Theorem 5, we have

$$0 \le r_{2m+1} - r_{2m} = \frac{(-1)^{2m}}{k_{2m+1}k_{2m}} \le \frac{1}{2m(2m+1)}$$

As $m \to \infty$, $\frac{1}{2m(2m+1)} \to 0$ and so by Squeeze theorem, we have

$$\lim_{m \to \infty} r_{2m} = \lim_{m \to \infty} r_{2m+1}$$

and hence $\lim_{n \to \infty} r_n$ exists and $r_{2m} < \lim_{n \to \infty} r_n < r_{2m+1}$ for every $m \ge 0$.

Definition 1. An infinite sequence a_0, a_1, a_2, \ldots with $a_0 \in \mathbb{Z}$ and $a_1, a_2, \ldots \in \mathbb{Z}^+$ determines an infinite simple continued fraction $\langle a_0, a_1, a_2, \ldots \rangle$ with value

$$\langle a_0, a_1, a_2, \dots \rangle \stackrel{\text{def}}{=} \lim_{n \to \infty} r_n$$

Theorem 7. The value of any infinite simple continued fraction $\langle a_0, a_1, a_2, \ldots \rangle$ is irrational.

Proof. Writing $\theta = \langle a_0, a_1, a_2, \dots \rangle$, we observe by Theorem 6 that θ lies between r_n and r_{n+1} , so that $0 < |\theta - r_n| < |r_{n+1} - r_n|$. Multiplying by k_n , and making use of the result from Theorem 5 that $|r_{n+1} - r_n| = 1/k_n k_{n+1}$, we have

$$0 < |k_n\theta - h_n| < \frac{1}{k_{n+1}}$$

Now suppose that θ were rational, say $\theta = a/b$ with $a, b \in \mathbb{Z}, b > 0$. Then multiplying the above equation by b, we have

$$0 < |k_n a - h_n b| < \frac{b}{k_{n+1}}$$

The integers k_n increase with n, so we could choose n sufficiently large so that $b < k_{n+1}$. Then the integer $|k_n a - h_n b|$ would lie between 0 and 1, which is impossible.

Lemma 1. Let $\theta = \langle a_0, a_1, a_2, \ldots \rangle$ be a simple continued fraction. Then $a_0 = [\theta]$. Furthermore, if θ_1 denotes $\langle a_1, a_2, a_3, \ldots \rangle$, then $\theta = a_0 + 1/\theta_1$.

Proof. By Theorem 6, we see that $r_0 < \theta < r_1$, i.e., $a_0 < \theta < a_0 + 1/a_1$. Since $a_1 \ge 1$, so $a_0 < \theta < a_0 + 1$ and hence $[\theta] = a_0$. Also,

$$\theta = \lim_{n \to \infty} \langle a_0, a_1, \dots, a_n \rangle = \lim_{n \to \infty} \left(a_0 + \frac{1}{\langle a_1, a_2, \dots, a_n \rangle} \right)$$
$$= a_0 + \lim_{n \to \infty} \frac{1}{\langle a_1, a_2, \dots, a_n \rangle} = a_0 + \frac{1}{\theta_1}$$

Theorem 8. Two distinct infinite simple continued fractions converge to different values. Proof. Let $\langle a_0, a_1, a_2, \ldots \rangle$ and $\langle b_0, b_1, b_2, \ldots \rangle = \theta$. Then by Lemma 1, $a_0 = [\theta] = b_0$ and

$$\theta = a_0 + \frac{1}{\langle a_1, a_2, \dots \rangle} = b_0 + \frac{1}{\langle b_1, b_2, \dots \rangle}$$

Hence $\langle a_1, a_2, \ldots \rangle = \langle b_1, b_2, \ldots \rangle$. Repetition of the argument gives $a_1 = b_1$, and so by induction, $a_n = b_n \forall n$.

1.5 Irrational numbers

We have shown that any infinite simple continued fraction represents an irrational number. Conversely, if we begin with an irrational number ξ , or ξ_0 , we can expand it into an infinite simple continued fraction. To do this we define $a_0 = [\xi_0], \xi_1 = 1/(\xi_0 - a_0)$ and next $a_1 = [\xi_1], \xi_2 = 1/(\xi_1 - a_1)$, and so by an inductive definition,

$$a_i = [\xi_i], \qquad \xi_{i+1} = \frac{1}{\xi_i - a_i}$$
(7)

The a_i are integers by definition, and the ξ_i are all irrational since the irrationality of ξ_1 is implied by that of ξ_0 , that of ξ_2 by that of ξ_1 , and so on. Furthermore, $a_i \ge 1$ for $i \ge 1$ because $a_{i-1} = [\xi_{i-1}]$ and the fact that ξ_{i-1} is irrational implies that

$$a_{i-1} < \xi_{i-1} < a_{i-1} + 1,$$
 $0 < \xi_{i-1} - a_{i-1} < 1,$
 $\xi_i = \frac{1}{\xi_{i-1} - a_{i-1}} > 1,$ $a_i = [\xi_i] \ge 1$

Theorem 9. With ξ_i as defined in equation (7), we have

$$\langle a_0, a_1, \dots \rangle = \langle a_0, a_1, a_2, \dots, a_{n-1}, \xi_n \rangle = \xi \text{ and } \xi_n = \langle a_n, a_{n+1}, a_{n+2}, \dots \rangle$$

Proof. With repeated application of equation (7) in the form $\xi_i = a_i + 1/\xi_i$, we get

$$\begin{aligned} \xi &= \xi_0 = a_0 + \frac{1}{\xi_1} = \langle a_0, \xi_1 \rangle \\ &= \left\langle a_0, a_1 + \frac{1}{\xi_2} \right\rangle = \langle a_0, a_1, \xi_2 \rangle \\ &= \left\langle a_0, a_1, \dots, a_{n-2}, a_{n-1} + \frac{1}{\xi_n} \right\rangle = \langle a_0, a_1, \dots, a_{n-1}, \xi_n \rangle \end{aligned}$$

Now, to prove that $\xi = \xi_0$ is the value of the infinite continued fraction $\langle a_0, a_1, a_2 \dots \rangle$ determined by the integers a_i , we use Theorem 3 to write

$$\xi = \langle a_0, a_1, \dots, a_{n-1}, \xi_n \rangle = \frac{\xi_n h_{n-1} + h_{n-2}}{\xi_n k_{n-1} + k_{n-2}}$$
(8)

with h_i and k_i as defined in equations (6). By Theorem 5, we have

$$\xi - r_{n-1} = \frac{\xi_n h_{n-1} + h_{n-2}}{\xi_n k_{n-1} + k_{n-2}} - \frac{h_{n-1}}{k_{n-1}}$$
$$= \frac{-(h_{n-1}k_{n-2} - h_{n-2}k_{n-1})}{k_{n-1}(\xi_n k_{n-1} + k_{n-2})} = \frac{(-1)^{n-1}}{k_{n-1}(\xi_n k_{n-1} + k_{n-2})}$$

As $n \to \infty$, $\frac{(-1)^{n-1}}{k_{n-1}(\xi_n k_{n-1} + k_{n-2})} \to 0$ because $\{k_n\}$ is increasing and $\xi_n > 0$. Hence, $\xi - r_{n-1} \to 0$ as $n \to \infty$ and then by Definition 1, we have

$$\xi = \lim_{n \to \infty} r_n = \lim_{n \to \infty} \langle a_0, a_1, \dots, a_n \rangle = \langle a_0, a_1, a_2, \dots \rangle = \langle a_0, a_1, a_2, \dots, a_{n-1}, \xi_n \rangle$$

With repeated application of equation (7) for ξ_n , we get the other equation.

1.6 Approximations to irrational numbers

Continuing to use the notation of the preceding sections, we now show that the convergents $r_n = h_n/k_n$ form a sequence of "best" rational approximations to the irrational number ξ .

Theorem 10. We have for $n \ge 0$,

$$\left|\xi - \frac{h_n}{k_n}\right| < \frac{1}{k_n k_{n+1}} \text{ and } \left|\xi k_n - h_n\right| < \frac{1}{k_{n+1}}$$

Proof. Using the result

$$\xi - r_{n-1} = \frac{(-1)^{n-1}}{k_{n-1}(\xi_n k_{n-1} + k_{n-2})}$$

(where $r_n = h_n/k_n$) from the proof of Theorem 9 and also using equation (7), we have

$$\left|\xi - \frac{h_n}{k_n}\right| = \frac{1}{k_n(\xi_{n+1}k_n + k_{n-1})} < \frac{1}{k_n(a_{n+1}k_n + k_{n-1})}$$

Now using equation (6), we get

$$\left|\xi - \frac{h_n}{k_n}\right| < \frac{1}{k_n k_{n+1}}$$

Multiplying this inequality by k_n , we get the second inequality.

Theorem 11. The convergents h_n/k_n are successively closer to ξ , i.e.,

$$\left|\xi - \frac{h_n}{k_n}\right| < \left|\xi - \frac{h_{n-1}}{k_{n-1}}\right|$$

In fact the stronger inequality $|\xi k_n - h_n| < |\xi k_{n-1} - h_{n-1}|$ holds. Proof. We use $k_{n-1} \le k_n$ to write

$$\left| \xi - \frac{h_n}{k_n} \right| = \frac{1}{k_n} |\xi k_n - h_n| < \frac{1}{k_n} |\xi k_{n-1} - h_{n-1}|$$
$$\leq \frac{1}{k_{n-1}} |\xi k_{n-1} - h_{n-1}| = \left| \xi - \frac{h_{n-1}}{k_{n-1}} \right|$$

To prove the stronger inequality, we observe that by equation (7), $a_n + 1 > \xi_n$ and therefore by equation (6), we have

$$\xi_n k_{n-1} + k_{n-2} < (a_n + 1)k_{n-1} + k_{n-2}$$
$$= k_n + k_{n-1} \le a_{n+1}k_n + k_{n-1} = k_{n+1}$$

This inequality along with the inequality

$$\xi - \frac{h_{n-1}}{k_{n-1}} = \frac{(-1)^{n-1}}{k_{n-1}(\xi_n k_{n-1} + k_{n-2})}$$

gives the following inequality

$$\left|\xi - \frac{h_n}{k_n}\right| = \frac{1}{k_{n-1}(\xi_n k_{n-1} + k_{n-2})} > \frac{1}{k_{n-1}k_{n+1}}$$

Multiplying by k_{n-1} and using Theorem 10, we get

$$|\xi k_{n-1} - h_{n-1}| > \frac{1}{k_{n+1}} > |\xi k_n - h_n|$$

This means that the convergent h_n/k_n is the best approximation to ξ of all the rational fractions with denominator k_n or less. The following theorem states this in a different way.

Theorem 12. If a/b is a rational number with b > 0 such that

$$\left|\xi - \frac{a}{b}\right| < \left|\xi - \frac{h_n}{k_n}\right|$$

for some $n \ge 1$, then $b > k_n$. In fact if $|\xi b - a| < |\xi k_n - h_n|$ for $n \ge 0$, then $b \ge k_{n+1}$.

Proof. First we prove that the second part of the theorem implies the first. Suppose that the first part is false so that there is a rational a/b with

$$\left|\xi - \frac{a}{b}\right| < \left|\xi - \frac{h_n}{k_n}\right|$$
 and $b \le k_n$

Taking the product of these two inequalities, we get

$$|\xi b - a| < |\xi k_n - h_n|$$

But the second part of the theorem says that this implies $b \ge k_{n+1}$, so we have a contradiction, since $k_n < k_{n+1}$ for $n \ge 1$.

To prove the second part of the theorem we proceed again by indirect argument, assuming that $|\xi b - a| < |\xi k_n - h_n|$ and $b < k_{n+1}$. We consider the following linear equations in x and y,

$$xk_n + yk_{n+1} = b$$
 and $xh_n + yh_{n+1} = a$

By Theorem 5, the determinants of coefficients is ± 1 , and consequently these equations have an integral solution x, y. Also, neither x nor y is zero because if x = 0, then $b = yk_{n+1} \implies y > 0$ and $b \ge k_{n+1}$, in contradiction to $b < k_{n+1}$. If y = 0, then $a = xh_n$ and $b = xk_n$, and

$$|\xi b - a| = |\xi x k_n - x h_n| = |x| |\xi k_n - h_n| \ge |k_n \xi - h_n|$$

and again we have a contradiction.

Next we prove that x and y have opposite signs. If y < 0, then $xk_n = b - yk_{n+1}$ shows that x > 0. If y > 0, then $b < k_{n+1} \implies b < yk_{n+1}$ and hence xk_n is negative, whence x < 0. It can be observed from the proof of Theorem 9 that $\xi k_n - h_n$ and $\xi k_{n+1} - h_{n+1}$ have opposite signs and hence $x(\xi k_n - h_n)$ and $y(\xi k_{n+1} - h_{n+1})$ have the same signs. Also from the linear equations defining x and y, we get $\xi b - a = x(\xi k_n - h_n) + y(\xi k_{n+1} - h_{n+1})$. Since the two terms on the right have the same sign, so we have

$$\begin{aligned} |\xi b - a| &= |x(\xi k_n - h_n) + y(\xi k_{n+1} - h_{n+1})| \\ &= |x(\xi k_n - h_n)| + |y(\xi k_{n+1} - h_{n+1})| \\ &> |x(\xi k_n - h_n)| = |x||\xi k_n - h_n| \ge |\xi k_n - h_n| \end{aligned}$$

which is a contradiction.

Theorem 13. Let ξ be an irrational number. If there is a rational number a/b with $b \ge 1$ such that

$$\left|\xi - \frac{a}{b}\right| < \frac{1}{2b^2}$$

then a/b equals one of the convergents of the simple continued fraction expansion of ξ .

Proof. It suffices to prove the result for the case (a, b) = 1. Let the convergents of the simple continued fraction expansion of ξ be h_j/k_j and suppose that a/b is not a convergent. The nested inequality $k_n \leq b < k_{n+1}$ determine an integer n. For this n, the inequality $|\xi b - a| < |\xi k_n - h_n|$ is impossible due to Theorem 12. Therefore,

$$\left|\xi k_n - h_n\right| \le \left|\xi b - a\right| < \frac{1}{2b} \implies \left|\xi - \frac{h_n}{k_n}\right| < \frac{1}{2bk_n}$$

Since $a/b \neq h_n/k_n$ and $bh_n - ak_n \notin \mathbb{Z}$, so

$$\frac{1}{bk_n} \le \frac{|bh_n - ak_n|}{bk_n} = \left|\frac{h_n}{k_n} - \frac{a}{b}\right| \le \left|\xi - \frac{h_n}{k_n}\right| + \left|\xi - \frac{a}{b}\right| < \frac{1}{2bk_n} + \frac{1}{2b^2}$$

which gives $b < k_n$, a contradiction.

Theorem 14. The n^{th} convergent of 1/x is the reciprocal of the $(n-1)^{th}$ convergent of x if x is any real number greater than 1.

Proof. We have, $x = \langle a_0, a_1, \ldots \rangle$ and $1/x = \langle 0, a_0, a_1, \ldots \rangle$. If h_n/k_n and h'_n/k'_n are the convergents for x and 1/x respectively, then using equations (6),

 $h'_0 = 0, h'_1 = 1, k_0 = 1$ and $h'_n = a_{n-1}h'_{n-1} + h'_{n-2}, k_{n-1} = a_{n-1}k_{n-2} + k_{n-3}$

Also,

$$k'_0 = 1, k'_1 = a_0, h_0 = a_0$$
 and $k'_n = a_{n-1}k'_{n-1} + k'_{n-2}, h_{n-1} = a_{n-1}h_{n-2} + h_{n-3}$

The theorem then follows from induction.

1.7 Periodic continued fractions

An infinite simple continued fraction $\langle a_0, a_1, a_2, \ldots \rangle$ is said to be periodic if there is an integer n such that $a_r = a_{n+r}$ for all sufficiently large r. Thus a periodic continued fraction can be written in the form

$$\langle b_0, b_1, b_2, \dots, b_j, a_0, a_1, a_2, \dots, a_{n-1}, \dots, a_0, a_1, a_2, \dots, a_{n-1}, \dots \rangle$$

$$= \langle b_0, b_1, b_2, \dots, b_j, \overline{a_0, a_1, a_2, \dots, a_{n-1}} \rangle$$
(9)

where the bar over $a_0, a_1, a_2, \ldots, a_{n-1}$ indicates that this block of integers is repeated indefinitely.

Theorem 15. Any periodic simple continued fraction is a quadratic irrational number, and conversely.

Proof. Let us write $\xi = \langle b_0, b_1, b_2, \dots, b_j, \overline{a_0, a_1, a_2, \dots, a_{n-1}} \rangle$ and $\theta = \langle \overline{a_0, a_1, a_2, \dots, a_{n-1}} \rangle$. Thus,

$$\theta = \langle \overline{a_0, a_1, a_2, \dots, a_{n-1}} \rangle = \langle a_0, a_1, a_2, \dots, a_{n-1}, \theta \rangle$$

Then by Theorem 3, we have

$$\theta = \frac{\theta h_{n-1} + h_{n-2}}{\theta k_{n-1} + k_{n-2}}$$

which is a quadratic equation in θ . Hence θ is either a quadratic irrational number or a rational number, but it cannot be rational due to Theorem 7. Now, ξ can be written in terms of θ as

$$\xi = \langle b_0, b_1, \dots, b_j, \theta \rangle = \frac{\theta m + m'}{\theta q + q'}$$

where m'/q' and m/q are the last two convergents to $\langle b_0, b_1, \ldots, b_j \rangle$. But θ is a quadratic irrational, i.e., θ is of the form $\frac{a + \sqrt{b}}{c}$, and hence ξ is of a similar form.

To prove the converse, let us begin with any quadratic irrational ξ or ξ_0 , of the form $\xi = \xi_0 = \frac{a + \sqrt{b}}{c}$ with integers $a, b, c, b > 0, c \neq 0$ and b not a perfect square (since ξ is irrational). We multiply the numerator and denominator by |c| to get

$$\xi_0 = \frac{ac + \sqrt{bc^2}}{c^2}$$
 or $\xi_0 = \frac{-ac + \sqrt{bc^2}}{-c^2}$

according as c is positive or negative. Thus, we can write ξ in the form

$$\xi_0 = \frac{m_0 + \sqrt{d}}{q_0}$$

where $q_0 \mid d - m_0^2$, d, m_0, q are integers, $q_0 \neq 0$ and d not a perfect square. By writing ξ_0 in this form we can get a simple formulation of continued fraction expansion $\langle a_0, a_1, a_2, \ldots \rangle$. We shall prove that the equations

$$a_{i} = [\xi_{i}], \qquad \xi_{i} = \frac{m_{i} + \sqrt{d}}{q_{i}}$$

$$m_{i+1} = a_{i}q_{i} - m_{i}, \qquad q_{i+1} = \frac{d - m_{i+1}^{2}}{q_{i}}$$
(10)

define infinite sequences of integers m_i, q_i, a_i and irrationals ξ_i in such a way that equations (7) hold, and hence we will have the continued fraction expansion of ξ_0 .

We start with ξ_0, m_0, q_0 as above and let $a_0 = [\xi_0]$. If ξ_i, m_i, q_i, a_i are known, then we take $\xi_{i+1} = \frac{m_{i+1} + \sqrt{d}}{q_{i+1}}, m_{i+1} = a_i q_i - m_i, q_{i+1} = \frac{d - m_{i+1}^2}{q_i}, a_{i+1} = [\xi_{i+1}].$

Now we use induction to prove that the m_i and q_i are integers such that $q_i \neq 0$ and $q_i \mid d - m_0^2$. This holds for i = 0. If it is true at the i^{th} stage, we observe that $m_{i+1} = a_i q_i - m_i$ is an integer. Then the equation

$$q_{i+1} = \frac{d - m_{i+1}^2}{q_i} = \frac{d - (a_i q_i - m_i)^2}{q_i} = \frac{d - m_i^2}{q_i} + 2a_i m_i - a_i^2 q_i$$

implies that q_{i+1} is an integer. Also, $q_{i+1} \neq 0$, because if not, then we would have $d = m_{i+1}^2$, but d is not a perfect square. Finally, we have $q_i = \frac{d - m_{i+1}^2}{q_{i+1}}$, which gives $q_{i+1} \mid d - m_{i+1}^2$. Now we verify that equations (7) hold. We have

$$\xi_i - a_i = \frac{m_i + \sqrt{d}}{q_i} - a_i = \frac{\sqrt{d} - (a_i q_i - m_i)}{q_i} = \frac{\sqrt{d} - m_{i+1}}{q_i}$$
$$= \frac{d - m_{i+1}^2}{q_i(\sqrt{d} + m_{i+1})} = \frac{q_i q_{i+1}}{q_i(\sqrt{d} + m_{i+1})} = \frac{1}{\frac{m_{i+1} + \sqrt{d}}{q_{i+1}}} = \frac{1}{\xi_{i+1}}$$

and hence equations (7) hold and so we have proved that $\xi_0 = \langle a_0, a_1, a_2, \dots \rangle$ with a_i as defined in equation (10).

We denote by ξ'_i , the conjugate of ξ_i , i.e.,

$$\xi_i' = \frac{m_i - \sqrt{d}}{q_i}$$

Taking conjugates in equation (8), we get

$$\xi'_0 = \frac{\xi'_n h_{n-1} + h_{n-2}}{\xi'_n k_{n-1} + k_{n-2}}$$

Solving this equation for ξ'_n , we have

$$\xi'_{n} = -\frac{k_{n-2}}{k_{n-1}} \left(\frac{\xi'_{0} - h_{n-2}/k_{n-2}}{\xi'_{0} - h_{n-1}/k_{n-1}}\right)$$

As *n* tends to infinity, both $h_{n-1}/k_{n-1} = r_{n-1}$ and $h_{n-2}/k_{n-2} = r_{n-2}$ tend to ξ_0 , which is different from ξ'_0 and hence the fraction in parenthesis tends to 1. Thus for sufficiently large *n*, say n > N where *N* is fixed, the fraction in parentheses is positive, and ξ'_n is negative. But ξ_n is positive for $n \ge 1$ and hence $\xi_n - \xi'_n > 0$ for n > N. Therefore, using equation (10), we have $2\sqrt{d}/q_n > 0$ and hence $q_n > 0$ for n > N. It also follows from equation (10) that

$$q_n q_{n+1} = d - m_{n+1}^2 \le d, \qquad q_n \le q_n q_{n+1} \le d$$
$$m_{n+1}^2 < m_{n+1}^2 + q_n q_{n+1} = d, \qquad |m_{n+1}| < \sqrt{d}$$

for n > N. Since d is a fixed positive integer, we conclude that q_n and m_{n+1} can assume only a fixed number of possible values for n > N. Hence the ordered pairs (m_n, q_n) can assume only a fixed number of possible pair values for n > N, and so there exist distinct integers j and k such that $m_j = m_k$ and $q_j = q_k$. WLOG, assume j < k. Then equations (10) give $\xi_j = \xi_k$ and hence

$$\xi_0 = \langle a_0, a_1, \dots, a_{j-1}, \overline{a_j, a_{j+1}, \dots, a_{k-1}} \rangle$$

i.e., any quadratic irrational can be written as a periodic simple continued fraction. \Box

Definition 2. Infinite continued fractions of the form $\langle \overline{a_0, a_1, \ldots, a_n} \rangle$ are called *purely periodic* continued fractions.

Theorem 16. The continued fraction expansion of the quadratic irrational number ξ is purely periodic if and only if $\xi > 1$ and $-1 < \xi' < 0$, where ξ' denotes the conjugate of ξ .

Proof. Consider an irrational number $\xi = \xi_0$ such that $\xi > 1$ and $-1 < \xi' < 0$. Taking conjugates in equation (7), we get

$$\frac{1}{\xi_{i+1}'} = \xi_i' - a_i \tag{11}$$

Now $a_i \ge 1$ for all $i \ge 0$ (even for i = 0 since $\xi_0 > \implies a_0 = [\xi_0] \ge 1$). Since $-1 < \xi'_0 < 0$, and if $\xi'_i < 0$, then $1/\xi'_{i+1} < -1$, and we have $-1 < \xi'_{i+1} < 0$. Therefore, by induction hypothesis, $-1 < \xi'_i < 0$ for all $i \ge 0$. Hence, equation (11) gives

$$0 < -\frac{1}{\xi_{i+1}} - a_i < 1 \implies a_i < -\frac{1}{\xi_{i+1}} < a_i + 1 \implies a_i = \left[-\frac{1}{\xi_{i+1}}\right]$$

Now $\xi = \xi_0$ is a quadratic irrational and hence by Theorem 15 has a periodic simple continued fraction expansion, i.e., $\xi_j = \xi_k$ for some integers j and k with 0 < j < k. Then we have $\xi'_j = \xi'_k$ and

$$a_{j-1} = \left[-\frac{1}{\xi'_j}\right] = \left[-\frac{1}{\xi'_k}\right] = a_{k-1}$$
$$\xi_{j-1} = a_{j-1} + \frac{1}{\xi_j} = a_{k-1} + \frac{1}{\xi_k} = \xi_{k-1}$$

Thus, $\xi_j = \xi_k \implies \xi_{j-1} = \xi_{k-1}$. A *j*-fold iteration of this implication gives us

$$\xi = \xi_0 = \xi_{k-j} = \langle \overline{a_0, a_1, \dots, a_{k-j-1}} \rangle$$

i.e., the continued fraction expansion of a quadratic irrational number is purely periodic.

To prove the converse, we assume that ξ is purely periodic, say $\xi = \langle \overline{a_0, a_1, \ldots, a_{n-1}} \rangle$, where a_i 's are positive integers. Then $\xi > a_0 \ge 1$ and by equation (8), we have

$$\xi = \langle a_0, a_1, \dots, a_{n-1}, \xi \rangle = \frac{\xi h_{n-1} + h_{n-2}}{\xi k_{n-1} + k_{n-2}}$$

Thus ξ is a root of the quadratic equation

$$f(x) = x^{2}h_{n-2} + x(k_{n-2} - h_{n-1}) - h_{n-2} = 0$$

which has two roots ξ and ξ' . Since $\xi > 1$, we only need to prove that f(x) has a root between -1 and 0 in order to establish that $-1 < \xi < 0$. We shall do this by showing that f(-1) and f(0) have opposite signs. We observe that $f(0) = -h_{n-2} < 0$, since $a_i > 0$ for $i \ge 0$. Also for $n \ge 1$, we have

$$f(-1) = k_{n-1} - k_{n-2} + h_{n-1} - h_{n-2}$$

= $(h_{n-1} + k_{n-1}) - (h_{n-2} + k_{n-2})$
= $(a_{n-1}h_{n-2} + h_{n-3} + a_{n-1}k_{n-2} + k_{n-3}) - (h_{n-2} + k_{n-2})$
= $(h_{n-2} + k_{n-2})(a_{n-1} - 1) + (h_{n-3} + k_{n-3})$
 $\ge h_{n-3} + k_{n-3} > 0$

and hence we are done.

1.8 Continued fraction expansions of square roots

We want the continued fraction expansion of \sqrt{d} for a positive integer d not a perfect square. We start with the closely related irrational number $\sqrt{d} + [\sqrt{d}] = \xi = \xi_0$, say. Then clearly, $\xi > 1$ and $-1 < \xi' = [\sqrt{d}] - d < 0$ and therefore by Theorem 16, the continued fraction expansion of ξ is purely periodic, say

$$\xi = \sqrt{d} + \left[\sqrt{d}\right] = \left\langle \overline{a_0, a_1, \dots, a_{r-1}} \right\rangle = \left\langle a_0, \overline{a_1, a_2, \dots, a_{r-1}, a_0} \right\rangle \tag{12}$$

We can suppose that we have chosen r to be the smallest integer for which ξ has an expansion of the form as in equation (12). We note that $\xi_i = \langle a_i, a_{i+1}, \ldots \rangle$ is purely periodic for all i and that $\xi_r = \xi_{2r} = \cdots$. Also, $\xi_i \neq \xi_0$ for all $i = 1, 2, \ldots, r-1$, because

otherwise there would be a shorter period. Therefore, $\xi_i = \xi_0$ if and only if *i* is of the form *jr* for some *j*.

Now we can start with $\xi_0 = \sqrt{d} + [\sqrt{d}], q_0 = 1, m_0 = [\sqrt{d}]$ in equation (10) because $1 \mid (d - [\sqrt{d}])^2$. Thus, for all $j \ge 0$,

$$\frac{m_{jr} + \sqrt{d}}{q_{jr}} = \xi_{jr} = \xi_0 = \frac{m_0 + \sqrt{d}}{q_0} = [\sqrt{d}] + \sqrt{d}$$
$$\implies m_{jr} - q_{jr}[\sqrt{d}] = (q_{jr} - 1)\sqrt{d}$$
(13)

Since the left hand side of equation (13) is rational, so for the right hand side to be rational, we should have $q_{jr} = 1$. Moreover $q_i = 1$ for no other values of the subscript *i*. For $q_i = 1$, $\xi_i = m_i + \sqrt{d}$, but ξ_i has a purely periodic expansion and so by Theorem 16, we have

$$-1 < \xi'_i < d \implies -1 < m_i - \sqrt{d} < 0 \implies \sqrt{d} - 1 < m_i < \sqrt{d} \implies m_i = [\sqrt{d}]$$

Now we establish that $q_i = -1$ does not hold for any *i*. Suppose $q_i = -1$ for some *i*. Then this implies that $\xi_i = -m_i - \sqrt{d}$ and so by Theorem 16, we have

$$-1 < \xi'_i < d \implies -1 < -m_i + \sqrt{d} < 0 \implies \sqrt{d} < m_i < -\sqrt{d} - 1$$

which is impossible.

Noting that $a_0 = [\xi_0] = \left[\sqrt{d} + [\sqrt{d}]\right] = 2[\sqrt{d}]$, we now turn to the case $\xi = \sqrt{d}$ (don't confuse this ξ with $\xi = \sqrt{d} + [\sqrt{d}]$ in equation (12)). Using equation (12), we have

$$\begin{aligned}
\sqrt{d} &= -[\sqrt{d}] + \left(\sqrt{d} + [\sqrt{d}]\right) \\
&= -[\sqrt{d}] + \langle 2[\sqrt{d}], \overline{a_1, a_2, \dots, a_{r-1}, a_0} \rangle \\
&= \langle [\sqrt{d}], \overline{a_1, a_2, \dots, a_{r-1}, a_0} \rangle
\end{aligned}$$

with $a_0 = 2[\sqrt{d}]$ as above.

Applying equations (10) to $\sqrt{d} + [\sqrt{d}]$ with $q_0 = 1, m_0 = [\sqrt{d}]$, we have

$$a_0 = 2[\sqrt{d}], m_1 = [\sqrt{d}], q_1 = d - [\sqrt{d}]^2$$

But we can also apply equations (10) to \sqrt{d} with $q_0 = 1, m_0 = 0$, to get

$$a_0 = [\sqrt{d}], m_1 = [\sqrt{d}], q_1 = d - [\sqrt{d}]^2$$

We see that though the values of a_0 are different, but the values of m_1 and q_1 are the same in both cases. Since $\xi_i = (m_i + \sqrt{d})/q_i$, we see that further application of equation (10) yields the same values of a_i, m_i, q_i in both the cases, i.e., the expansions of $\sqrt{d} + [\sqrt{d}]$ and \sqrt{d} differ only in the values of a_0 and m_0 .

Incidentally we have proved the following theorem.

Theorem 17. If the positive integer d is not a perfect square, the simple continued fraction expansion of \sqrt{d} has the form

$$\sqrt{d} = \langle a_0, \overline{a_1, a_2, \dots, a_{r-1}, 2a_0} \rangle$$

with $a_0 = \sqrt{d}$. Furthermore, with $\xi_0 = \sqrt{d}, q_0 = 1, m_0 = 0$ in equations (10), we have $q_i = 1$ if and only if $r \mid i$ and $q_i = -1$ holds for no subscript *i*. Here *r* denotes the length of the shortest period in the expansion of \sqrt{d} .

1.9 A numerical example

Example 1: Expand $\sqrt{5}$ as an infinite simple continued fraction.

Solution: To derive the continued fraction expansion of $\sqrt{5}$, subtract the floor, invert what is left, and repeat:

$$\sqrt{5} = 2 + (\sqrt{5} - 2) = 2 + \frac{1}{\sqrt{5} + 2} = 2 + \frac{1}{4 + (\sqrt{5} - 2)} = 2 + \frac{1}{4 + \frac{1}{\sqrt{5} + 2}}$$

and the process will repeat to give

$$\sqrt{5} = \langle 2, 4, 4, 4, \dots \rangle = \langle 2, \overline{4} \rangle$$

2 Pell's equation

The equation $x^2 - dy^2 = N$, with given integers d and N and unknowns x and y, is usually called *Pell's equation*. If d is negative, it can have only a finite number of solutions. If d is a perfect square, say $d = a^2$, the equation reduces to (x - ay)(x + ay) = N and again there is only a finite number of solutions. The most interesting case of the equation arises when d is a positive integer not a perfect square. For this case, simple continued fractions are very useful.

We expand \sqrt{d} into a simple continued fraction as in Theorem 17, with convergents $r_n = h_n/k_n$, and with q_n defined by equations (10) with $\xi_0 = \sqrt{d}$, $q_0 = 1$, $m_0 = 0$.

Theorem 18. If d is a positive integer not a perfect square, then

$$h_n^2 - dk_n^2 = (-1)^{n-1} q_{n+1}$$

for all integers $n \geq -1$.

Proof. Using equations (8) and (10), we have

$$\sqrt{d} = \xi_0 = \frac{\xi_{n+1}h_n + h_{n-1}}{\xi_{n+1}k_n + k_{n-1}} = \frac{\left(\frac{m_{n+1} + \sqrt{d}}{q_{n+1}}\right)h_n + h_{n-1}}{\left(\frac{m_{n+1} + \sqrt{d}}{q_{n+1}}\right)k_n + k_{n-1}} = \frac{(m_{n+1} + \sqrt{d})h_n + q_{n+1}h_{n-1}}{(m_{n+1} + \sqrt{d})k_n + q_{n+1}k_{n-1}}$$

This gives

$$(m_{n+1}k_n + q_{n+1}k_{n-1} - h_n)\sqrt{d} = m_{n+1}h_n + q_{n+1}h_{n-1} - dk_n$$
(14)

Since the right hand side of equation (14) is rational, so for the right hand side to be rational, we should have

$$m_{n+1}k_n + q_{n+1}k_{n-1} - h_n = 0$$

and hence,

$$m_{n+1}h_n + q_{n+1}h_{n-1} - dk_n = 0$$

Then, from both these equations, we have

$$m_{n+1} = \frac{h_n - q_{n+1}k_{n-1}}{k_n} = \frac{dk_n - q_{n+1}h_{n-1}}{h_n}$$

This gives,

$$h_n^2 - dk_n^2 = (h_n k_{n-1} - h_{n-1} k_n) q_{n+1} = (-1)^{n-1} q_{n+1}$$

using Theorem 5 in the last step, and this equation is true for all integers $n \ge 1$.

We have the following corollary of Theorem 18.

Corollary 18.1. Taking r as the length of the period of the expansion of \sqrt{d} , as in Theorem 17, we have for $n \ge 0$,

$$h_{nr-1}^2 - dk_{nr-1}^2 = (-1)^{nr} q_{nr} = (-1)^{nr}$$

With n even, this gives infinitely many solutions of $x^2 - dy^2 = 1$ in integers, provided d is positive and not a perfect square.

It can be seen that Theorem 18 gives us solutions of Pell's equation for certain values of N. In particular, Corollary 13.1 gives infinitely many solutions of $x^2 - dy^2 = 1$ by the use of even values of nr. Of course if r is even, all values of nr are even. If r is odd, Corollary 13.1 gives infinitely many solutions of $x^2 - dy^2 = -1$ by the use of odd integers $n \ge 1$. Apart from the trivial solutions $x = \pm 1, y = 0$ of $x^2 - dy^2 = 1$, all solutions of $x^2 - dy^2 = N$ fall into sets of four by all combinations of signs $\pm x, \pm y$. Hence it is sufficient to discuss the positive solutions x > 0, y > 0.

2.1 Convergents of \sqrt{d} and solutions of Pell's equation

Theorem 19. Let d be a positive integer not a perfect square, and let the convergents to the continued fraction expansion of \sqrt{d} be $r_n = h_n/k_n$. Let the integer N satisfy $|N| < \sqrt{d}$. Then any positive solution x = s, y = t of the equation $x^2 - dy^2 = N$ with (s,t) = 1 satisfies $s = h_n, t = k_n$ for some positive integer n.

Proof. Let *E* and *M* be positive integers such that (E, M) = 1 and $E^2 - \rho M^2 = \sigma$, where $\sqrt{\rho}$ is irrational and $0 < \sigma < \sqrt{\rho}$ with $\sigma, \rho \in \mathbb{R}$, not necessarily integers. Then

$$\frac{E}{M} - \sqrt{p} = \frac{\sigma}{M(E + M\sqrt{\rho})}$$

and hence,

$$0 < \frac{E}{M} - \sqrt{\rho} < \frac{\sqrt{\rho}}{M(E + M\sqrt{\rho})} = \frac{1}{M^2 \left(\frac{E}{M\sqrt{\rho}} + 1\right)}$$

Also,

$$0 < \frac{E}{M} - \sqrt{\rho} \implies \frac{E}{M\sqrt{\rho}} > 1$$

and therefore,

$$\left|\frac{E}{M} - \sqrt{\rho}\right| < \frac{1}{2M^2}$$

By Theorem 13, E/M is a convergent in the continued fraction expansion of ρ .

If N > 0, we take $\sigma = N$, $\rho = d$, E = s, M = t and the theorem holds in this case. In N < 0, then $t^2 - (1/d)s^2 = -N/d$ and we take $\sigma = -N/d$, $\rho = 1/d$, E = t, M = s. We find that t/s is a convergent in the expansion of $1/\sqrt{d}$. Then by Theorem 14, s/t is a convergent in the expansion of \sqrt{d} .

As a result of the theorems 17,18 and 19, we have the following theorem.

Theorem 20. All positive solutions of $x^2 - dy^2 = \pm 1$ are to be found among $x = h_n, y = k_n$, where h_n/k_n are the convergents of the expansion of \sqrt{d} . If r is the period of the expansion of \sqrt{d} as in Theorem 17, and if r is even, then $x^2 - dy^2 = -1$ has no solution, and all positive solutions of $x^2 - dy^2 = 1$ are given by $x = h_{nr-1}, y = k_{nr-1}$ for $n = 1, 2, 3, \ldots$ On the other hand, if r is odd, then $x = h_{nr-1}, y = k_{nr-1}$ give all positive solutions of $x^2 - dy^2 = -1$ by use of $n = 1, 3, 5, \ldots$ and all positive solutions of $x^2 - dy^2 = -1$ by use of $n = 2, 4, 6, \ldots$.

The sequence of pairs $(h_0, k_0), (h_1, k_1), (h_2, k_2), \ldots$ will include all positive solutions of $x^2 - dy^2 = 1$. Also since $a_0 = [\sqrt{d}] > 0$, so the sequence h_0, h_1, h_2, \ldots is strictly increasing. If (x_1, y_1) is the first solution that appears, then for every other solution $(x, y), x > x_1$ and hence $y > y_1$ also. Having found this least positive solution by means of continued fractions, we can find all the remaining positive solutions by a simpler method, as the following theorem suggests.

Theorem 21. If (x_1, y_1) is the least positive integer solution of $x^2 - dy^2 = 1$, where d is a positive integer not a perfect square, then all positive integer solutions are given by (x_n, y_n) for $n = 1, 2, 3, \ldots$, defined by $x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n$.

Proof. First we establish that (x_n, y_n) is a solution. Since $x_n + y_n\sqrt{d} = (x_1 + y_1\sqrt{d})^n$, so $x_n - y_n\sqrt{d} = (x_1 - y_1\sqrt{d})^n$. Hence we can write

$$x_n^2 - dy_n^2 = (x_n - y_n \sqrt{d})(x_n + y_n \sqrt{d})$$

= $(x_1 - y_1 \sqrt{d})^n (x_1 + y_1 \sqrt{d})^n = (x_1^2 - dy_1^2)^n = 1$

Suppose there is a positive integer solution (s, t) that is not in the collection $\{(x_n, y_n)\}$. Since both $x_1 + y_1\sqrt{d}$ and $s + t\sqrt{d}$ are greater than 1, there must be some integer m such that

$$(x_1 + y_1\sqrt{d})^m \le s + t\sqrt{d} < (x_1 + y_1\sqrt{d})^{m+1}$$

. We cannot have $(x_1+y_1\sqrt{d})^m = s+t\sqrt{d}$, because this would imply $x_m+y_m\sqrt{d} = s+t\sqrt{d}$ so that $x_m = s$ and $y_m = t$. So we have,

$$(x_1 + y_1\sqrt{d})^m < s + t\sqrt{d} < (x_1 + y_1\sqrt{d})^{m+1}$$

Multiplying this inequality by $(x_1 - y_1\sqrt{d})^m = (x_1 + y_1\sqrt{d})^{-m}$, we get

$$1 < (s + t\sqrt{d})(x_1 - y_1\sqrt{d})^m < x_1 + y_1\sqrt{d}$$

We define integers a and b such that $a + b\sqrt{d} = (s + t\sqrt{d})(x_1 - y_1\sqrt{d})^m$. Then we have

$$a^{2} - db^{2} = (s^{2} - dt^{2})(x_{1}^{2} - dy_{1}^{2})^{m} = 1$$

So, (a, b) is a solution of $x^2 - dy^2 = 1$ such that $1 < a + b\sqrt{d} < x_1 + y_1\sqrt{d}$. But then, $0 < (a + b\sqrt{d})^{-1}$ and hence $0 < a - b\sqrt{d} < 1$. Now we have

$$a = \frac{1}{2}(a + b\sqrt{d}) + \frac{1}{2}(a - b\sqrt{d}) > \frac{1}{2} + 0 > 0$$

and

$$b\sqrt{d} = \frac{1}{2}(a + b\sqrt{d}) - \frac{1}{2}(a - b\sqrt{d}) - \frac{1}{2} - \frac{1}{2} = 0$$

Therefore, (a, b) is a positive integer solution. Therefore, $a > x_1, b > y_1$, which contradicts $a + b\sqrt{d} < x_1 + y_1\sqrt{d}$. Therefore, all positive integers solutions are given by (x_n, y_n) for $n = 1, 2, 3, \ldots$, with x_n and y_n defined as above.

Theorem 22. If $x^2 - dy^2 = -1$ is solvable, and (x_1, y_1) is the smallest positive solution. Then (x_2, y_2) defined by $x_2 + y_2\sqrt{d} = (x_1 + y_1\sqrt{d})^2$ is the smallest positive solution of $x^2 - dy^2 = 1$.

Proof. Assume, to the contrary, that (x'_2, y'_2) defined by $x'_2 + y'_2\sqrt{d} = (x_1 + y_1\sqrt{d})^2$ is a positive integer solution of $x^2 - dy^2 = 1$ and $y'_2 < y_2$. Define x'_1, y'_1 such that

$$x_1' + y_1'\sqrt{d} = \frac{x_2' + y_2'\sqrt{d}}{x_1 + y_1\sqrt{d}} = \frac{(x_2' + y_2'\sqrt{d})(x_1 - y_1\sqrt{d})}{x_1^2 - dy_1^2}$$

Using $x_1^2 - dy_1^2 = -1$, we get

$$x_1' + y_1'\sqrt{d} = (x_2' + y_2'\sqrt{d})(y_1\sqrt{d} - x_1) = (dy_1y_2' - x_1x_2') + (x_2'y_1 - x_1y_2')\sqrt{d}$$

and so $x'_1 = dy_1y'_2 - x_1x'_2$, $y'_1 = x'_2y_1 - x_1y'_2$, which turns out to be a solution of $x^2 - dy^2 = 1$ and smaller than (x'_2, y'_2) , a contradiction.

2.2 A numerical example

Example 2: Find the least positive integer solution of $x^2 - 73y^2 = -1$ (if it exists) and of $x^2 - 73y^2 = 1$, given that $\sqrt{73} = \langle 8, \overline{1, 1, 5, 5, 1, 1, 16} \rangle$.

Solution: Since the period of this continued fraction expansion is 7, an odd number, we know from Theorem 20 that the equation $x^2 - 73y^2 = -1$ has solutions. Moreover, the least positive solution is $x = h_6, y = k_6$ from the convergent $r_6 = h_6/k_6$. Using equations (6), we see that the convergents are

$$r_0 = 8/1, r_1 = 9/1, r_2 = 17/2, r_3 = 94/11, r_4 = 487/57, r_5 = 561/68, r_6 = 1068/125$$

Therefore, the least positive integer solution of $x^2 - 73y^2 = -1$ is x = 1068, y = 125. To get the least positive integer solution of $x^2 - 73y^2 = 1$, we use Theorem 22 to calculate x and y equating the rational and irrational parts of

$$x + y\sqrt{73} = (1068 + 125\sqrt{73})^2$$

The values of x and y are 2281249 and 267000 respectively, which is the least positive integer solution of $x^2 - 73y^2 = 1$.