CHENNAI MATHEMATICAL INSTITUE

Topology- Mid-Semester examination

Duration: $2\frac{1}{2}$ hours

Date: 1st Mar, 2024.

- Answer any FIVE questions.
 Give brief answers.
 - Q1. (a) Show that \mathbb{Q} is dense in \mathbb{R}_{ℓ} (the reals under lower limit topology).
- (b) Show that if X is a compact metric space, then X has a countable basis for its topology.
- (c) Show that $X = S_{\Omega} \cup \{\Omega\}$ (where $\alpha < \Omega \ \forall \alpha \in S_{\Omega}$) under order topology is compact but does not have a countable basis.
 - Q2. (a) Show that \mathbb{R}^{ω} (with product topology) is metrizable.
- (b) Consider $X = I^{\omega}$ under the uniform topology. Find the limit points of the set $S = \{0, 1\}^{\omega} \subset X$.
- (c) Show that X is not compact.
 - Q3. Let X, Y be metric spaces.
- (a) Define the notion of uniform convergence of a sequence of maps $(f_n: X \to Y)_{n \ge 1}$.
- (b) For $n \ge 1$, let $f_n : [0,1) \to I$ be the function $f_n(t) = t^n \ \forall t$. Show that $\lim_{n \to \infty} f_n(t) = 0 \ \forall t \in [0,1)$ but that the convergence is not uniform.
- Q4. (a) Show that the space $X = \mathbb{N} \times [0,1)$ in the dictionary order topology is path connected.
- (b) Show that the space $[0,1]\times[0,1)$ is locally compact under the dictionary order topology.
- (c) Show that S_{Ω} is locally compact but not compact.
- Q5. (a) Suppose that $S \subset \mathbb{R}$ is a nontrvial subgroup (under addition) and that it is discrete (in the subspace topology). Show that S is closed and that $S \cong \mathbb{Z}$. (a) Show that any cyclic subgroup of \mathbb{S}^1 is either finite or dense in \mathbb{S}^1 .
- Q6. (a) Suppose that Y is the one-point compactification of the unit ball $B = \{v \in \mathbb{R}^2 \mid ||v|| < 1\}$. Show that $Y \cong \mathbb{S}^2$.
- (b) Let X be a locally compact Hausdorff, non-compact topological space and let Y be its one-point compactification. A sequence $(x_n)_{n\geq 1}$ in X is said to diverge, written $\lim x_n \to \infty$, if, given any compact subset $K \subset X$, there exists an $N \geq 1$ such that $x_n \notin K$ for all $n \geq N$. Show that a continuous function $f: X \to \mathbb{R}$ extracts to a continuous function $\tilde{f}: Y \to \mathbb{R}$ if, whenever $\lim x_n \to \infty$, we have $(f(x_n))_{n\geq 1}$ converges to a point of \mathbb{R} .