Chennai Mathematical Institue Topology- End-Semester examination

Date: 20th April, 2024.

Duration 3hours.

- Answer any FOUR questions from Part A and FOUR from Part B.
- Each question in Part A carries six marks and each in Part B carries eight marks.
- o Give brief answers.

Part A

- Q1. Define a linear continuum and determine which of the following spaces with order topology are linear continua: (a) $J = [0,1] \cup (2,3]$ with the usual order, (b) $I \times I$ with the dictionary order.
- Q2. Define the notion of local compactness. (a) Give an example of a bounded subspace of \mathbb{R} which is *not* locally compact. (b) Suppose that X is locally compact Hausdorff and $Y \subset X$ is a closed subset, show that Y is locally compact.
- Q3. Define the notion of a completely regular space. Prove or disprove: "Any subspace of a completely regular space is completely regular."
- Q4. Let $X = \prod_{n \in \mathbb{N}} X_n$ with product topology. Prove: (a) If $X_n = \{1, 2, ..., 10^n\} \ \forall n$, then X is totally disconnected. (b) if $X_n = [0, 10^{-n})$ for all $n \ge 1$, then X is not locally compact.
- Q5. (a) Suppose that X has a countable dense subset. Show that if $\{U_{\alpha}\}_{{\alpha}\in J}$ is a collection of pairwise disjoint open subsets, then J is countable.
- (b) Give an example of a compact Hausdorff space which does not have a countable dense subset.
- Q6. (a) Let $X = \mathbb{R}^2 \setminus K$, with subpace topology, where $K = C \times C$ where $C \subset \mathbb{R}$ is the Cantor set. Show that X is path connected.
- (b) Prove that any open subset of \mathbb{R}^n is locally contractible, i.e., every point $p \in X$ has an open neighbourhood V which is contractible.

Part B

Q7. (a) Let $X, Y = \mathbb{R}^{\omega}$ where X is given product topology and Y the uniform topology. Let $a(k) = (a_n(k))_{n \geq 1} \in I^{\omega}$ where

$$a_n(k) = \begin{cases} 1/n, & \text{if } n \neq k, \\ 1, & \text{if } n = k. \end{cases}$$

Determine in which of the spaces X, Y, the sequence $(a(k))_{k\geq 1}$ is convergent.

- (b) Show that $x = (x_n)_{n \ge 1} \in Y$ belong to the same connected component of Y as $0 = (0)_{n \ge 1} \in Y$ if x is a bounded sequence.
 - Q8. (a) Show that there is a continuous surjection $\beta(\mathbb{N}) \to \beta(\mathbb{N}^{\omega})$.
- (b) Let S be the topologist's sine curve $S = \{(t, \sin(\pi/t)) \in \mathbb{R}^2 \mid 0 < t \leq 1\}$ and let \overline{S} be the closure of S in \mathbb{R}^2 . Let $\alpha : (0,1] \to \mathfrak{S}$ be the embedding $t \mapsto (t, \sin(\pi/t))$. Find a

1

continuous function $f: \overline{S} \to \mathbb{R}$ such that $f(\alpha(t)) = \sin(\pi/t)$.

(c) Suppose that $h:(0,1]\to[-1,1]$ is a continuous function such that

$$h(1/n) = \begin{cases} 1, & \text{if } n \equiv 0 \mod 2, \\ -1, & \text{if } n \equiv 1 \mod 2. \end{cases}$$

Show that there does not exist any continuous function $g: \overline{S} \to \mathbb{R}$ such that $g(\alpha(t)) = h(t)$ for all $0 < t \le 1$.

Q9. (a) Define the notion of a subspace $A \subset X$ being a strong deformation retract.

(b) Show that \mathbb{S}^{n-1} is a strong deformation retract of $\mathbb{R}^n \setminus \{0\}$.

(c) Show that $S = C_0 \cup C_1$ is <u>not</u> a retract of $\mathbb{R}^2 \setminus \{0\}$ where C_j is the circles with centre at (2j,0) and unit radius.

Q10. Let $X \subset \mathbb{R}^2$ be the union of the following subsets $A = \mathbb{R} \times \{0\}$, $B_n, n \in \mathbb{Z}$, is the circle with unit radius and centre n, 1. (a) Define a covering projection $X \to \mathbb{S}^1 \vee \mathbb{S}^1$ where $p(B_0) = \mathbb{S}^1 \times \{1\}$. (b) Show that $p: X \to \mathbb{S}^1 \vee \mathbb{S}^1$ is a regular covering. (c) Determine the subgroup $p_*(\pi_1(X, \tilde{x_0})) \subset \pi_1(\mathbb{S}^1 \vee \mathbb{S}^1, (1, 1)) = F_2 = \langle a, b \rangle$ where $\tilde{x_0} = 0 \in X$. (d) Describe the deck transformation group Deck(p).

Q11. Let T be the torus $T = \mathbb{S}^1 \times \mathbb{S}^1$ and let $\alpha : T \to T$ be the map $(z, w) \mapsto (-z, w^{-1}) \ \forall z, w \in \mathbb{S}^1$. (a) Show that $\alpha(z, w) \neq (z, w) \ \forall (z, w) \in T$, and $\alpha \circ \alpha = id$. Let $S = T/\sim$ where $(z, w) \sim \alpha(z, w)$. Show that the quotient map $q: T \to S$ is a covering projection.

(b) Using the usual identification of T as the quotient space I^2/\sim , show that $\alpha([s,t])=(1/2+s,1-t)$. Hence or otherwise, show that S is the quotient space of $R=[0,1/2]\times I$ with quotient topology wiith identifications on are on only the boundary of the rectangle $\partial R=\{0,1/2\}\times[0,1]\cup[0,1/2]\times\{0,1\}$ as follows: $(0,t)\sim(1/2,1-t), \forall t\in I$ and $(s,0)\sim(s,1)$, $\forall s\in[0,1/2]$. (Draw the diagram depicting the identifications.

Q12. Let G be the group with presentation $\langle x, y \mid xyx^{-1}y \rangle$. (a) Let $H \subset G$ be the subgroup generated by x^2, y . Show that H is a normal subgroup of G of index 2. (b) Show that x has infinite order and x^2 belongs to the centre of G.