Theory of Computation Assignment 1

Due Date: August 31, 2023

Write clear and concise solutions. It is fine to discuss with others, but your solutions *must* be in your own words that you have fully understood. All problems carry equal marks.

- 1. Let *n* denote your date of birth as an eight digit number in the MMD-DYYYY format. Let $m = n \pmod{64}$ and let $w \in \{0, 1\}^*$ be the 6-bit binary representation of *m*. In case *m* requires fewer than 6 bits, pad it with leading zeros so that $w \in \{0, 1\}^6$. Let $L_w = \{x \in \{0, 1\}^* \mid w \text{ is}$ a substring of $x\}$. Design a DFA that accepts *L*.
- 2. Let $\Sigma = \{0, 1, 2\}$. Any string $w \in \{0, 1, 2\}^*$ can be treated as the ternary representation of a number $\operatorname{enc}(w)$ (by dropping the leading zeros). Design a DFA that accepts the language $L = \{w \in \Sigma^* \mid \operatorname{enc}(w) \text{ is divisible by 5}\}.$
- 3. For a language $L \subseteq \Sigma^*$ let $\operatorname{pref}(L) = \{w \in \Sigma^* \mid ww' \in L \text{ for some } w' \in \Sigma^*\}$. Show that if L is regular then $\operatorname{pref}(L)$ is also regular.
- 4. Let $\Sigma = \{a_1, a_2, \ldots, a_k\}$. Let *L* consist of strings $w \in \Sigma^*$ such that the last symbol of *w* does not occur elsewhere in *w*. That is, if $w \in L$ then w = xa where $x \in (\Sigma \setminus \{a\})^*$. Give an NFA for *L*.
- 5. Let $L = \{0^{k^2} \mid \text{for all positive integer } k\}$. Is L^* regular? If so, give a DFA for it with an explanation. Otherwise, prove L^* is not regular.
- 6. Give a regular language L that has a "small" NFA but any DFA for it is "large". Give an intuitive argument justifying your answer.
- 7. Let $L \subseteq \{0, 1\}^*$ consist of all strings w such that there are two 0's in w separated by a number of positions that is a multiple of 4 (note that 0 is also a multiple of 4). Give a DFA for L.
- 8. For $w \in \{0,1\}^*$ let \hat{w} denote the reverse of w. E.g. if w = 011 then $\hat{w} = 110$. As before, let $enc(\hat{w})$ denote the integer encoded by \hat{w} . Let $L = \{w \in \{0,1\}^* \mid enc(\hat{w}) \text{ is divisible by 7}\}$. Design a DFA for L.

- 9. For a language $L \subseteq \Sigma^*$ let $\min(L)$ consist of all strings $w \in L$ such that no proper prefix of w is in L. Let $\max(L)$ consist of all strings $w \in L$ such that no proper extension wx is in L. Show that both $\min(L)$ and $\max(L)$ are regular if L is regular.
- 10. If L is regular then show that $L' = \{ww' \mid w \in L \text{ and } |w'| = k\}$ is also regular.