
BVR Probability 2023 week 1

Before beginning:

Books: We follow Feller Vol. 1 with excursions to Alon and Spencer;
Mitzenmacher; Hoel-Port-Stone Vol 1. (see moodle page for titles). But you
are free (and encouraged) to consult other books.

Some of you asked if we use measure. We shall not. But very important
is: you should think about the concepts till you understand. With the advent
of internet and social media, no one seems to think that they need to think
– except those who want to brainwash you. Life seems to revolve around:
click/read/forward! I would like you to be serious about learning.

Grading: Midsem: 40 and semestral: 60.

Our TAs are Ambaye Om and Tejas Oke. They would be glad to help
you with problem sets. You should work out problem sets and write down
solutions. You should practice writing proofs, especially proper justifications
of steps needs practice. The Supreme court, in collaboration with our rulers
has invented novel technique: you can be proved guilty based on ‘confiden-
tial’ evidence which you can not see and can not respond to. We shall not
follow this technique. Our proofs must be transparent. Remember, I can
only evaluate what you write; Not what you have in mind.

Beginning:
The phenomenon of chance is more visible in games and gambling. The

origins of probability are indeed in gambling. Let us start with a concrete
problem.

Anush and Soham are playing a match which consists of 9 games. The
winner, one who wins a majority of games, will receive 800 Rs. Till now 5
games have been played: S won 3 and A won 2. Unfortunately the match has
to be stopped for reasons beyond our control. How should the prize money
be shared?

1. S says that he is the winner at this stage and so he should receive all.
Thus S: 800 and A: 0.

2. A says that the match is stopped for no fault of his. So it should be
regarded as draw and they should share equally.
Thus A: 400 and S: 400.

3. Then S says: I won three out of five games, the money should be
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shared in the ratio 3:2.
Thus S: 480 and A: 320.

4. Fermat and Pascal then think as follows. Why did this problem
arise at all: Because of uncertainty regarding the remaining unplayed 4
games. So the solution should be gotten by trying to understand this un-
certainty. Let us see. There are 16 possible scenarios in the remaining four
games. Of these 11 scenarios make S winner while 5 scenarios make A win-
ner (AAAA,AAAS,AASA,ASAA, SAAA). Therefore, assuming that the
players are equally good to win any one game, it is reasonable to award the
money in this proportion 11:5.
Thus S: 550 and A: 250.

Thus entered the idea of understanding and analyzing uncertainty. Now-
a-days you will reformulate the last argument as: the chances of S winning
is 11/16 and the chances of A winning is 5/16 (given the results so far) and
the money is shared in accordance to their chances of winning.

uncertainty:
Suppose that an experiment has total number of scenarios n. Of these,

you are interested in an event B having k scenarios. Then chances of the
event B, (that is our chances of observing an outcome in the set B when we
really do the experiment), equals k

n
— where we assumed that the scenarios

are equally likely. Most of the initial uses of this concept was in gambling.
Later, this concept of chance found interesting applications in several

areas. One realized that life is full of uncertainty and thus chance analysis can
be applied to understand many practical problems. For instance, will it rain
tomorrow? We are not certain, but need to know in order to advise farmers
and fishermen. You can try to predict. Agreed, it is possible that sometimes
we go wrong in predictions, no problem, good enough to be correct most of
the time and miss very very few times. You get data about the necessary
parameters — like wind speed, cloud concentration, pressure, temperature
etc; — to understand this uncertainty; make a model and predict.

Is it wise to release a particular medicine in the market? Here there is
no data, you have to create. You need to conduct experiments; collect data
regarding its effectiveness, side effects etc and then make a model and then
take a decision.

Understanding chance phenomena was of supreme importance in physics
too. It enters in several ways. Imagine a large container with water and also a
few pollen particles. Assume that water is in equilibrium. Actually it is never
in equilibrium. What we mean is that there are no external forces that make
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pollen particle move — like water currents, air bubbles, evaporation etc. In
practice you see the pollen particle still continues to perform motion. why
does it move and how does it move. This motion is what you call Brownian
Motion, because it was first observed by Robert Brown.

Here is a lesson for us. Keep your eyes open and observe things carefully.
Brown, not only observed this motion, but also persisted that reasons must
be found for this movement! He was even wondering if there is life in the
pollen particles.

Many many years later Einstein explained the reason. It is all due to
chance phenomenon: the surrounding water molecules keep hitting the pollen
particle and displace it ‘this way, that way’ continuously and this causes mo-
tion. More precisely, particles we are talking about being small, one molecu-
lar bombardment may not cause observable movement of the pollen particle;
but the large number of molecules of water and the consequence large number
of bombardments cause an observable motion. Actually you do not consider
one pollen particle. Throw some pollen particles. Ask: At time t > 0, what
proportion of particles are at a distance x from their initial position. But let
us not complicate life now. You should know that this probabilistic analysis
was the basis for the first calculation of Avogadro number. Several years later
Norbert Wiener proved that such motions can be mathematically modelled.

When you learn statistical mechanics, or quantum mechanics, you will see
probability entering naturally. Now a days we use probability, in an essential
way, in computer science too (randomized algorithms, simulation, · · · ) ; and
modelling of stock market prices and so on. Do you see the similarity: pollen
particle moves this way/that way; stock price moves up/down.

Prediction of crop yield is another essential problem. After all, if there
is going to be shortage of a produce, Government should initiate purchase
orders now for future procurement. Can not wait till you see actual yield to
take action, because then it may be too late – you may not get the item or
you may have to pay high prices.

Modelling uncertainty:
So how do you model chance experiments. The first thing is the follow-

ing: you must know what happens when you do the experiment, that is, the
possible scenarios. They are called outcomes. For example when we toss a
coin twice, one after other, the scenarios are HH,HT, TH, TT with obvious
understanding of the symbols used. Each one of these is called an outcome
of the experiment.

3



The set of all outcomes is called sample space of the experiment. Usu-
ally sample space is denoted by Ω. Any subset of the sample space is called
an event.

Experiment: Toss coin twice
Sample space Ω: {HH,HT, TH, TT}.
Experiment: Roll a six faced die once.
Sample space Ω: {1, 2, 3, 4, 5, 6}
Experiment: Toss a coin till you get heads and then stop.
Sample space Ω: {H; TH; TTH; TTTH; · · · · · · }.
So on and on.

In the first two examples there are finitely many outcomes. In the third
example there are infinitely many outcomes, but countable. It is possible to
think of experiments where there are more than countably many outcomes.

Experiment: Observe the bulb glowing above, do not switch off. Note
down the life time of this bulb. Sample space Ω: [0,∞).

You can think of a radio-active particle disintegrating. The time till a
beep occurs in the Geiger counter, that is, time till a particle is released.

We want to model the chance phenomenon in such experiments. Any
such activity starts with understanding and modelling simple experiments.
If they do not fit reality, then use the understanding thus far gained to make
a realistic model; and so on. Basic philosophy: understand simple things first.

probability:
We have been using the word experiment and we shall describe several

experiments shortly. But you might still wonder what exactly is ‘experiment’.
What exactly is an outcome. The idea of sample space is made precise as
follows. As far us our mathematics is concerned, we simply start with a
set (non-empty), and call this sample space and elements of Ω are called
outcomes. Of course, the way you get the set Ω depends on the experiment
you are considering. But what matters for us in modelling is the set and
not who does the experiment, when etc. Since we want to understand simple
experiments, to start with, we assume that our set Ω is a finite or a countably
infinite set.

The idea of chance is made mathematically precise as follows. For each
ω ∈ Ω we associate a number, chance of that outcome, p(ω). This number
will tell you the chances of observing the outcome ω, if and when you do
the experiment. Since we believe chances of some thing happening should be
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non-negative, we should have p(ω) ≥ 0 for each ω ∈ Ω.

Suppose we have two (different) outcomes ω1, ω2. It stands to reason to
believe: the chances that one of the outcomes ω1 or ω2 appears is p(ω1) +
p(ω2). More generally if A is any set of outcomes then the chances, that one
outcome in A occurs, should equal

∑
ω∈A

p(ω).

In particular, the chances that an outcome in Ω is observed, equals∑
ω∈Ω

p(ω). But Ω being the set of all possible scenarios, we are sure to ob-

serve something from Ω. We somehow feel that if an event never happens,
its chances are zero; whereas if an event is sure to happen then its chances
are one. In other words, the above sum should equal one,

∑
ω∈Ω

p(ω) = 1.

A probability space is a pair (Ω, p) where Ω is a finite or a countably infinite
set; and p a function that associates with each ω ∈ Ω a non-negative number
p(ω) in such a way that all these numbers add to one.

Ω is called sample space; elements ω ∈ Ω are called outcomes. The number
p(ω) is supposed to tell us the chances of observing the outcome ω. Subsets of
Ω are called events. We then define Probability of an event A; denoted P (A) by
P (A) =

∑
ω∈A

p(ω).

Observe that the definition above does not use the words ‘experiment’,
‘chance’ etc. We can refer to (or define) the pair (Ω, p) as experiment!

For example, if the sample space is {H,T} then p(H) = 0.3 and p(T ) =
0.7 is a possible assignment. Of course p(H) = 0.5 and p(T ) = 0.5 is also
an assignment of probability. In other words these two assignments are two
models. At this stage, you might get worried as to how to get these proba-
bilities and who gives them. Instead of getting worried, you should be happy
that it is left to your choice and you can start with any assignment of your
liking and build models. Proceed to do calculations, evaluate probabilities
of complicated events and so on. You can build several models for the same
phenomenon.

The natural question that should bother you is the following. I started
saying that probability is useful in understanding phenomena and making
predictions. So what is the worth of these models and which model should we
follow for our predictions. This is where you need to make some observations
of the phenomenon and develop techniques that help choosing one of your
models that fits reality and use it to predict. This body of techniques goes
by the name of ‘statistics’.

In high school you have learnt ratios (of favourable outcomes to total
number of outcomes or whatever your teacher taught you) as probabilities.
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So, are we developing something different? Not really, we are developing
more general models which include what you learnt, as special cases.

equally likely outcomes:
We first start understanding experiments which have finitely many out-

comes. We further assume that the outcomes are equally likely; we have only
intuitive idea of what this means and must make a mathematical model. For
example in tossing a coin once, there are two outcomes H,T and we assume
that they are equally likely, so each must have chance 1/2 (because total
must be 1).

Let Ω be the sample space, finite, of our experiment. If outcomes of Ω are
equally likely, there is a number c such that p(ω) = c for all ω and since they
should add to one; we conclude c|Ω| = 1or p(ω) = 1/|Ω| for each outcome.
This immediately leads to the conclusion that chances of any event equals
the fraction of outcomes which belong to that event. Remember probability
of an event is the sum of probabilities of all outcomes in that event.

In an experiment with finitely many equally likely outcomes, the probabil-
ity of an event A equals the ratio

number of outcomes in A

total number of outcomes

Thus calculating probability reduces to counting number of outcomes in
event of interest. This is one reason for considering finite sample spaces and
equally likely outcomes. You can use your expertise in counting which you
learnt in high school. Also, this formula is exactly what you learnt in high
school.

You must understand two things. Most of the time we consider tossing
coin or throwing balls into boxes. These are only symbolic and apply to many
situations. For example any analysis involving coin tossing can be applied
to experiments where there are just two outcomes; H/T or Success/Failure
or On/Off or +1/ − 1 or good/defective etc. Balls could be interpreted as
particles and boxes could be interpreted as energy levels.

Secondly, ‘equally likely’ is only a first step. For example if you are
manager of a company manufacturing bolts; each bolt could be good or
defective. It is disastrous for the company to assume that these two outcomes
are equally likely.
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We shall now discuss several examples to see how the seemingly mean-
ingless (some of you may have even felt ‘trivial to do’) calculations you made
in high school come to life and also see how calculations are not always that
trivial.

Example 1:
I have two usual decks of 52 playing cards each. I arrange one set of

cards in a line, one after another. I now shuffle the second deck and place
the cards in a line sequentially below each card in the first line. It is in-
teresting to ask: what are the chances of a match; match at place i means
the same card (same denomination) appears in the two rows at place i. So
the question is: what are the chances that there is match in at least one place.

What is the experiment here? Place the second deck below first one as
stated. What is the sample space? All possible arrangements of the 52 cards,
of the second deck, in a line. This constitutes Ω. How many outcomes are
there? 52!. is it possible to write them down and see how many of them are
in our event? It takes a very very long time, so it is not the best way of doing
it.

Let A be the set of all outcomes where there is at least one match. It is
not easy to directly count |A|, number of elements in A. So we split this event
into simpler events and use ‘inclusion-exclusion’ formula. Let, for 1 ≤ i ≤ 52,
Ai be the set of all outcomes in which the cards at the i-th place are same.
Clearly A = ∪Ai.

Inclusion-Exclusion principle:

|
n
∪
1
Ai| = S1 − S2 + S3 − S4 + · · ·

S1 =
∑n

1 |Ai|; S2 =
∑

i<j |Ai∩Aj|; S3 =
∑

i<j<k |Ai∩Aj∩Ak|; · · · .

Is this formula correct? We shall see later.
Is this formula useful? After all, if we are unable to calculate the numbers

Si then this formula is also useless. We are lucky. I leave for you to check,
in our example,

|Ai| = 51!; |Ai ∩ Aj| = 50! (i 6= j)

|Ai ∩ Aj ∩ Ak| = 49! (i < j < k) · · ·

Thus
S1 = 52× 51! = 52!
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S2 =

(
52

2

)
× 50! =

52!

2!

S3 =

(
52

3

)
× 49! =

52!

3!

Thus

P (A) = 1− 1

2!
+

1

3!
− 1

4!
+ · · · ± 1

52!

This is the chances that there is at least one match. I used ± for the last
term, we know the sign is indeed minus (check).

If you want chances of no match, P (Ac) you will see

P (Ac) = 1− 1 +
1

2!
− 1

3!
+

1

4!
− · · · ± 1

52!

Here are some comments on the power of technique/argument used above
which is true of many mathematical arguments.

Instead of 52 cards, if we have two similar decks of n cards, then the
chances that there is no match is given by

1− 1 +
1

2!
− 1

3!
+

1

4!
− · · · ± 1

n!

This is pretty close to 1/e if n is pretty large.
In other words the argument is still applicable and gives an answer. We

can also see that the answer is close to a number we already knew.

symbols are unimportant. Consider the following problem: I have 52 let-
ters to different persons and 52 envelopes with their addresses. I place the
letters at random in the envelopes. What are the chances that at least one
letter goes to its envelope. You will see the answer is exactly same as above.
Convince yourself that this is so.

Did you realize that the word ‘shuffle’ quietly disappeared after statement
of the problem. Where did it go? It went into the model! It is difficult to
explain what is shuffling – who will do, how many times, by what method,
etc. But what is its purpose? Its purpose is that all arrangements are
equally likely. That is precisely what we used in our calculation. In other
words what is achieved by our mind in using ‘shuffling’ is precisely achieved
by the mathematical modelling.

This is called matching experiment. There are several other things
you can do with this experiment.
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Example 2:
Let A = {1, 2, · · · , N}. Experiment consists of picking one after another,

twenty times, points from this set A. Remember always selected from A, we
are not excluding the already selected elements when selecting a later point.
Thus we are making a list of 20 items from A, with repetitions allowed.

Sample space Ω consists of all sequences (x1, x2, · · · , x20) where for each
i, xi ∈ A. Check |Ω| = N20. Each outcome has probability 1/N20.

This experiment is called sampling with replacement, of size 20.
With replacement because when we take second item the first item is not
removed from the set A; the second selection is made as if you noted down
the first item and put it back before second selection. Each outcome of
this experiment is called a sample (with replacement) of size 20.

What are the chances that first observation (first point of the sample) is
1? Answer: there are N19 outcomes for which first item is 1. So the required
probability is N19/N20 = 1/N

What are the chances that second item is 1? Again there are N19 out-
comes where second item is 1. So required probability is again 1/N .

What are the chances that first and second item are 1? There are N18

such outcomes and so the probability is N18/N20 = 1/N2.
What are the chances that 1 is included in the sample, that is some xi

in the sample is 1? There are (N − 1)19 outcomes where xi 6= 1 for all i and
hence the required probability equals

N20 − (N − 1)20

N20
= 1− (1− 1

N
)20

Of course you can talk about sample of size n. The set from which you are
picking, namely, {1, 2, · · · , N} is called population. It need not be numbers.
it could consist of all students of cmi.

Example 3:
Again let A = {1, 2, · · · , N}. Experiment consists of picking one after

another, twenty times, points from this set A, each time NOT replacing the
points selected earlier.

Sample space Ω consists of all sequences (x1, x2, · · · , x20) where for each
i, xi ∈ A and they are distinct. That is xi 6= xj for i 6= j.

Check |Ω| = N(N − 1) · · · (N − 19).
We assume that N ≥ 20. Otherwise the sample space is empty set.
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Each outcome has probability

1

N(N − 1) · · · (N − 19)
.

This experiment is called sampling without replacement, of size 20.
Without replacement because when we take second item the first item is
removed from the set A; similarly at each stage selected item is removed and
then next selection is made. Each outcome of this experiment is called
a sample (without replacement) of size 20.

What are the chances that first observation (first point of the sample) is
1? Answer: there are (N − 1)(N − 2) · · · (N − 19) outcomes for which first
item is 1. So the required probability is 1/N

What are the chances that second item is 1? Again there are (N−1)(N−
2) · · · (N − 19) outcomes where second item is 1. So required probability is
again 1/N .

What are the chances that first and second item are 1? Zero.
What are the chances that 1 is included in the sample, that is some xi

in the sample is 1? There are (N − 1)(N − 2) · · · (N − 20) outcomes where
xi 6= 1 for all i and hence the required probability equals 1− N−20

N
= 20

N

Example 4:
Again let A = {1, 2, · · · , N}. Experiment consists of picking a subset of

A of size 20.
Remember, we are not picking elements one by one. We grab a subset

consisting of 20 elements.
Sample space Ω consists of all subsets of A which have 20 elements. That

is all ω ⊂ A with |ω| = 20 Check |Ω| =
(
N
20

)
We assume that N ≥ 20. Otherwise the sample space is empty set.
Each outcome has probability 1

(N20)
.

This experiment is called selecting a subset of size 20 or sampling
a subset of size 20. Each outcome is called a random subset of size 20.

What are the chances that first observation (first point of the sample) is
1? this question does not make sense. There is no first or second element.
We have a subset consisting of 20 points, that is all.

What are the chances that second item is 1? Again meaningless question.
What are the chances that 1 is included in the selected set? that is 1 ∈ ω?

There are
(
N−1

19

)
such outcomes and hence the probability equals(
N−1

19

)(
N
20

) =
(N − 1)!

19!(N − 20)!

20!(N − 20)!

N !
=

20

N
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same as in the case of sampling without replacement.
For example when you want to make a committee of 3 students, it is the

three that matters and not who is selected first etc.

Example 5:
I have 30 boxes numbered: 1, 2, · · · , 30. I have 20 balls numbered:

1, 2, · · · , 20. Experiment is to throw the balls into the boxes. |Ω| = 3020. all
these outcomes are equally likely.

What are the chances that the first box is empty? 2920

3020

What are the chances that boxes 1,5,7 contain respectively 10,7,3 balls?(
20
10

)(
10
7

)
/3020 Remember, any 10 balls could go in box 1.

This experiment is called Maxwell-Boltzman experiment. Boxes are
energy levels and balls are elementary particles. The interesting point is:
apparently, no known particles obey this rule!

Example 6:
I have 30 boxes numbered: 1, 2, · · · , 30. I have 20 balls all looking alike.

There is no way to distinguish one ball from the other. Experiment is to
throw the balls into the boxes. How many different arrangements can our
eye perceive? |Ω| =

(
49
29

)
.

This can be seen in several ways. Put 49 star marks in a row; select 29
of these and convert them into vertical lines. You see a picture of 20 balls
(the remaining star marks) put in 30 boxes (made by the vertical lines). And
every method of putting balls into the boxes is achieved this way. remember,
that now it makes no sense to say: where did ball one go? all balls look
alike. so two arrangements are different only when the ‘occupancy numbers’
are different, that is, the vector (n1, n2, · · · , n30) where ni is the number of
balls in box i; determines the arrangement. Two different vectors give two
different arrangements.

Bose-Einstein Rule: These distinguishable arrangements are equally
likely.

This experiment is called Bose-Einstein experiment. Again boxes are
energy levels and balls are elementary particles.

What are the chances that box one is empty?
(

48
28

)
/
(

49
29

)
You can simplify

and see.
What are the chances that boxes 1,5,7 contain respectively 10,7,3 balls?

1/
(

49
29

)
This is because there is only one outcome satisfying the given condi-

tion.
Particles that obey this rule are called Bosons. Photons are known to obey

this rule. To understand how outrageous is this rule consider the following.
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I have a box with 1 green ball and 100 red balls numbered 1,2,· · · , 100. I
pick a ball at random. What are the chances it is green: 1/101.

Suppose now I tell you that all red balls look alike, there are no numbers
on them. How many outcomes your eye can perceive? only two: Red, green;
Can I say that these are equally likely and conclude that chance of green
ball is 1/2? Ridiculous. The B-E rule does not apply here. Thus you should
be careful. Without knowing if B-E rule is ‘assumed’, you can not start
calculating just because you are told ‘balls (or whatever)’ look alike.

Why photons obey B-E rule is unclear, but they do.

Example. 7:
I have 30 boxes numbered: 1, 2, · · · , 30. I have 20 balls all looking alike.

There is no way to distinguish one ball from the other. Experiment is to
throw the balls into the boxes subject to the condition: No more than one
ball in a box. |Ω| =

(
30
20

)
These are equally likely.

What are the chances that box one is empty?
(

29
20

)
/
(

30
20

)
. What are the

chances that boxes 1,5,7 contain respectively 10,7,3 balls? Zero.
This is called Fermi-Dirac experiment. Protons obey this rule.

Example 8:
We want to elect monitor for the class. There are two candidates: Ananya

and Dwitimaya. the forty students vote: D got 24 votes and S got 16 votes
and thus D is the winner.

What are the chances that through out vote-counting, D is leading? That
is through out counting D maintains lead.

We discuss this problem because it teaches a new counting technique and
the method has lots of applications. Further the problem itself has a neat
answer:

24− 16

24 + 16
=

8

40
.

What is vote counting? No, do not think of electronic machines; there is
no counting you do there, you press a button and answer pops up. Let us
count a vote for D as +1 and a vote for A as −1. Thus vote counting means
all possible sequences of ±1 of length 40 which have 24 ones and 16 minus
ones. This is the sample space. Thus |Ω| =

(
40
24

)
We assume that all these outcomes are equally likely. Thus the problem

boils down to finding |T | where T consists of sequences which have at every
stage more +1 than −1.

If we think of outcomes as simply sequences of ±1 then to see if an
outcome is in T or not, we need to add and check at every stage. So let us
think of Ω in a different and convenient manner.
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A path is a sequence (0, s0), (1, s1), · · · (k, sk) where each si is an integer
and si − si−1 = ±1 for all i ≥ 1. The path is said to start at s0 and end at
sk and is of length k. You can also talk about paths starting at (1, 5) etc.

We claim Ω can be thought of as the set of paths of length 40 starting at
0 and ending at 8. obviously any such path defines a vote counting; simply

(si − si−1 : i = 1, 2, · · · , 40)

Verify that this has exactly 24 ones and 16 minus ones (because path ends at
8 and starts at zero). Conversely, given a vote counting (εi : i = 1, 2, · · · , 40)
you can define a path by taking

s0 = 0, sm =
m∑
1

εi 1 ≤ m ≤ 40.

Verify that this path starts at zero and ends at 8.
You can draw the axes and join successive points by straight line and

visualize a path. such a picturesque visualization suggests new ideas as we
see now.

A vote counting corresponds to a path starting at (0, 0) and ending at
(40, 8). Number of paths starting at (0, 0) and ending at (n, r) are(

n
n+r

2

)
=

(
n
n−r

2

)
.

This is because, to have such a path the number of ones must be (n + r)/2
and number minuses must be (n − r)/2. If k ≥ 0 is not an integer, we take(
n
k

)
to be zero. In the formula above if (n+ r)/2 is not an integer (≥ 0) then

value is by definition, zero.
You must understand a very important matter here. The formula is stated

above as a fact with a proof. However the formula ‘
(
n
k

)
= 0 when k is not

integer’ is a convention. It is something we adapted. You can not confuse
conventions with facts. So the question arises, if (n+ r)/2 is not an integer,
can you show that the number of paths from (0, 0) to (n, r) is indeed zero,
so that the convention agrees with the stated formula. Yes.

Thus total number of vote countings are
(

40
24

)
. Let us note a simple but

powerful fact.

Reflection Principle:
Let k ≥ 1 and r ≥ 1 be integers.

number of paths from (0, k) to (n, r) which touch or cross the x-axis (after
starting)
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equals
number of paths from (0,−k) to (n, r).
Note (0,−k) is reflection of (0, k) in the x-axis. The proof of this fact

uses reflection in x-axis.
Let A be the first set of paths and B be the second set of paths. Take a

path π in A: (0, s0), (1, s1), · · · · · · (n, sn); s0 = k; sn = r.
Since it touches the x-axis; let i be the first index with si = 0. Reflect

the path till that point in x-axis. do not reflect the remaining segment of the
path. That is, consider the path π∗:

(0,−s0), (1,−s1), · · · (i,−si), (i+ 1, si+1), (i+ 2, si+2), · · · (n, sn).

Remembering that si = 0, we see (i, si) is same as (i,−si). We can easily
verify that this is also a path, that is, successive s-differences are ±1. This
path starts at (0,−k) and ends at (n, r). Hence π∗ ∈ B.

Given path η ∈ B it starts below x-axis and ends above; so must hit x-
axis, take the first time it hits and reflect the part till then in x-axis, keeping
later part as is. This will be a path π ∈ A and η = π∗ and actually the map
η 7→ π is inverse map of π 7→ π∗.

This one-one map between A and B proves the result.
We are interested in
number of paths (0, 0) to (40, 8) that do not touch/cross x-axis.
[such a path should pass through (1, 1)]
= number of paths from (1, 1) to (40, 8) that do not touch x-axis
[subtract 1 from first coordinate to see]
= paths from (0, 1) to (39, 8) that do not etc
= [Total number of paths (0, 1) to (39, 8)] minus [number of paths (0, 1)

to (39, 8) that touch etc]
(Use reflection principle)
=[paths (0, 1) to (39, 8)] minus [paths (0,−1) to (39, 8) ]
= [paths (0, 0) to (39, 7)] minus [paths (0, 0) to (39, 9) ]

=

(
39

23

)
minus

(
39

24

)

=

(
40

24

)
24− 16

40
.

Since the total number of outcomes is
(

40
24

)
we conclude that the required

probability is 8/40 as stated.
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This is path counting example and there are several interesting con-
sequences of the reflection principle which we see later.

Example 9:
This is stick breaking example.
I have 23 sticks numbered 1, 2, · · · , 23. Or 23 sticks of different colors.

Break each into two parts one small part and one large part. Now I make a
bag of 23 sticks again by pairing these 46 pieces. What are the chances of
getting back original pairing (original sticks)? What is the probability that
long pieces are paired with small parts?

Here

|Ω| = 46!

223 (23)!

This is because, if c is the number of ways of pairing, consider the problem
of pairing and arranging the pairs in a line. This can be done using two
methods:

(Method 1)
make 23 pairs (c ways) and then arrange these 23 pairs in a row ((23)!ways).
so the required number is c (23)! ways.

(Method 2)
pick a pair out of the 46 pieces, put in place one;
pick a pair out of the rest, put in place 2 etc.
so can be done in (

46

2

)(
44

2

)
· · ·
(

2

2

)
=

46!

223

As a result

c (23)! =
46!

223
; c =

46!

223(23)!

Thus each outcome has probability

1

c
=

223 (23)!

(46)!

This is also the probability of getting original pairing.

If A is the set of all pairings where large parts are paired with short parts,
then |A| = (23)! — you need to put long pieces in a line, no matter how, and
then place short pieces one with each long piece. So the required probability
equals

223 (23)! (23)!

(46)!
=

223(
46
23

)
15



As you could guess, these 23 sticks are the 23 chromosomes in human cell.
They break at the centromere, giving you one long part and one small part
– centromere is not exactly in the centre. Then they recombine. The first
question asks the chances of getting original chromosomes back or original
cell back. The second question asks for the chances of the cell dying; if two
long pieces join there is not enough space in the cell to fit in. what happens
if two short pieces join?

What happens if there are N sticks? For example, Drasofila has seven
pairs of chromosomes.

Let us now prove the inclusion-exclusion principle. We do in a little more
generality, which will be useful later.

Let Ω be a finite set. Suppose for every point ω ∈ Ω, we are given a
number f(ω). Let us define for every subset A ⊂ Ω,

F (A) =
∑
ω∈A

f(ω).

We take F (∅) = 0.
Here is the formula: Suppose A1, . . . , An are subsets of Ω, then

F (∪Ai) = S1 − S2 + S3 − · · · (♠)

A ∩B where

S1 =
∑
i

F (Ai); S2 =
∑
i<j

F (Ai ∩ Aj); S3 =
∑
i<j<k

F (Ai ∩ Aj ∩ Ak); etc

When each f(ω) = 1, then F (A) = |A| giving the formula stated in the
matching problem.
When we have a probability space (Ω, p) then taking f(ω) = p(ω), we get
similar formula for P (A), probabilities of events.

Proof 1: Fix ω ∈ ∪Ai. we show
(i) if ω 6∈ ∪Ai then f(ω) is not added on the right side of (♠).
(ii)if ω ∈ ∪Ai then f(ω) is added exactly once on the right side of (♠).
Statement (i) is clear because then, f(ω) does not appear in the calculations
of F (Ai) or F (Ai ∩ Aj) etc.

For proof of (ii), suppose ω occurs in exactly k of the sets; say Amp ,
1 ≤ p ≤ k. Then
f(ω) is added k times in calculation of S1, it appears in the calculation of
F (Amp) for each p.

16



f(ω) is added
(
k
2

)
times in calculation of S2, it appears in the calculation of

F (Amp ∩ Amq) for each p < q.
and so on.
Thus f(ω) is added

k −
(
k

2

)
+

(
k

3

)
− · · · = 1− (1− 1)k = 1

This completes the proof.

Proof 2: Use induction on n. Do it for n = 2 and proceed. Execute the
proof

17



BVR Probability 2023 week 2

conditional probability:

One of the most important concepts is that of conditional probability.
Most of the time we are not totally ignorant. There is a chance experiment,
we do not know the outcome but we know some partial information about
the outcome.

For example when you are predicting tomorrow’s weather, you are not
completely ignorant, you do not close your eye and say there are two pos-
sibilities etc. You will see the information about wind speed, temperature,
pressure etc. Similarly, if a mother goes to a doctor and asks if her two
year old baby is of correct weight, then the doctor does not blindly compare
baby’s weight with the average weight of two years olds. He will see several
parameters like the birth weight etc and compares with the average weight
of children with similar parameters.

Example: Consider rolling a fair die.
Ω = {1, 2, 3, 4, 5, 6} and P (A) = |A|/6.
Let A be the event A = {2, 3, 4}. Then P (A) = 3/6.
Some one told us that an even number appeared. How shall we define

probabilities now? Let us denote B = {2, 4, 6}. It is meaningless to say that
the probabilities of events are as earlier. strictly speaking, it is meaningful
but practically useless. If we are now asked chances of the event A then we
feel that P (A) should be 2/3. Because, there are now only three possibilities:
2, 4, 6, of which the event A has two: 2, 4. Of course, if we say P (A) = 2/3
there will be total confusion because in the original experiment P (A) = 3/6.
So we say P (A B) = 2/3; read conditional probability of A given B or prob-
ability of A given B. Here ‘given B’ means that an outcome in B occurred.

Similarly, if tomorrow someone tells that an odd number occurred, then
you need to rethink and say that 1, 3, 5, are the possible outcomes with this
information P (A) = 1/3 etc. It is a nuisance to keep on changing sample
space and then calculate. One smart fellow found out the quantity P (A B)
is nothing but P (A ∩ B)/P (B). You can also check this! This is what was
used in high school.

This formula has the advantage that it expresses the conditional proba-
bility, that we felt, as ratio of usual probabilities. Thus you can calculate
conditional probability without any sample space considerations, using only
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probabilities in the original experiment . We take this as the definition.

Definition: Suppose Ω be a probability space with equally likely outcomes
(thus p(ω) = 1/|Ω| for every outcome). Then we define for events A and B,
conditional probability of event A given event B, by

P (A B) = P (A ∩B)/P (B)

of course ‘given’ means we are told that an event in B occurred.
Warning: A B is NOT an event. Thus to say P (A B) is probability of

the event A B is meaningless. It is conditional probability of the event A
given the event B.

Before we continue the story further with equally likely outcomes, let us
consider general experiments.

not necessarily equally likely outcomes:
Let us now discuss experiments where the outcomes may not be equally

likely. Let (Ω, p) be a probability space. Remember, we then defined for any
event A; P (A) =

∑
ω∈A

p(ω).

Definition: Let (Ω, p) be a probability space. Then for any two events A
and B; we define conditional probability of A given B by

P (A B) = P (A ∩B)/P (B)

We define A,B to be independent if P (A B) = P (A), or equivalently if,
P (A ∩B) = P (A)P (B).

We talk about conditional probabilities only when P (B) 6= 0. You can
see that the above definition is imitation of what we arrived at in the equally
likely case. Is there any justification to use it in this general case? Yes, shall
illustrate by an example; though you can argue more generally.

Example: Ω = {1, 2, 3, 4, 5, 6}; p(k) = k/21.
Thus the die is loaded/biased, chances of a face are proportional to the
number on that face. As earlier let A = {2, 3, 4} and B = {2, 4, 6} Suppose
that we are told B occurred. How should we redefine our probabilities?
Clearly then p∗(1) = p∗(3) = p∗(5) = 0. Suppose p∗(2) = a then we must
have p∗(4) = 2a because for our die chances of 4 are double the chances of
2. Similarly p∗(6) = 3a but since we must have

∑
ω∈Ω

p∗(ω) = 1 we must have:

when we are told B occurred

p∗(1) = p∗(3) = p∗(5) = 0; p∗(2) = 1/6; p∗(4) = 2/6; p∗(6) = 3/6
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Hence under the information given, we feel

P (A B) = p∗(2) + p∗(3) + p∗(4) =
1 + 2

6
=

1

2
(feel)

Under the information, The suggested formula gives

P (A B) =
P (A ∩B)

P (B)
=

6/21

12/21
=

1

2
(suggested formula)

Thus the feeling agrees with the suggested formula. As I said, you can justify
the suggested formula in all experiments, not only in this example.

The definition of conditional probability can be used to calculate P (A∩B)
if you knew P (B) and P (A B); simply using P (A ∩B) = P (B)P (A B).

Example: Ω = {HH,HT, TH, TT}
probabilities: p(HH) = 0.1; p(HT ) = 0.2; p(TH) = 0.3; p(TT ) = 0.4
This is a legitimate model, these numbers are non-negative and add to

one. Is the notation misleading? Does this correspond to tossing two coins?
Let us see.

Consider the event that first letter is H; thus A = {HH,HT}.
Then P (A) = 0.1 + 0.2 = 3/10 Similarly P (Ac) = 7/10.
Also if B is the event that second letter is H, then

P (B A) = 1/3. P (Bc A) = 2/3

P (B Ac) = 3/7 P (Bc Ac) = 4/7

Here is an experiment: I have three coins: I, II, III
coin I has chance of Heads 3/10; Hence Tails has chance 7/10
coin II has chance of Heads 1/3; Hence Tails has chance 2/3
coin III has chance of Heads 3/7; Hence Tails has chance 4/7
Toss coin I ; If Heads up, toss coin II; if tails up toss coin III.
Then the outcomes are as above. Interestingly, probabilities for outcomes
should also be as prescribed above! For example,

p(HH) = P (AB) = P (A)P (B A) = (3/10)(1/3) = 0.1

Example: Ω = {1, 2, 3, 4, 5, 6}
p(1) = p(2) = p(3) = 0.1 p(4) = p(5) = 0.2 p(6) = 0.3
This corresponds to rolling an biased die once. What are the chances

that even number turns up? Answer: 0.1 + 0.2 + 0.3 = 0.6.
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If A is the event {1, 5, 6} then also P (A) = 0.6. Similarly, you can calcu-
late probability of any event. If B = {2, 4, 6} then you can calculate P (A B).

Sometimes we would be knowing P (A B) but we want to know P (B A).
here is an example. Let us say a proportion a of people in Chennai have a
certain viral fever. I am not feeling well and go to the doctor. The doctor
gets blood test done. Even though the chances of my having the infection
are a, we would like to know given the result of the test. No test is foolproof.
both kinds of errors occur. It may give false negative: I have the infection
but the test says NO with probability α. It may give false positive too: I do
not have infection, but the test may say Yes with probability β. The problem
now is the following:

A : test said YES B : I have infection.
Want P (B A)
What do I know?

P (B) = a; P (Bc) = 1− a

P (A B) = 1− α; P (Ac B) = α

P (A Bc) = β; P (Ac Bc) = 1− β

Then our rules tell us

P (B A) =
P (A ∩B)

P (A)
=

P (AB)

P (AB) + P (ABc)

=
P (B)P (A B)

P (B)P (A B) + P (Bc)P (A Bc)

and all these quantities are known.

Polya urn scheme:
Consider an urn with 30 balls; 20 red and 10 green. here is the game

which can be played forever.
Pick a ball at random, note its color and put back and add one ball of that
color to the urn. Repeat...
We calculate some probabilities. What are the chances first draw is red?
P (R1) = 20/30
What are the chances second draw is red? We do not know the result of
the first draw and hence we do not know the composition of the urn before
second draw and hence we can not calculate as a simple ratio. Even if we
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knew result of first draw, such a ratio gives only conditional probability given
your assumption on the result of the first draw. We proceed as follows

P (R2) = P (R2G1) + P (R2R1) = P (G1)P (R2 G1) + P (R1)P (R2 R1)

=
10

30

20

31
+

20

30

21

31
=

20

30

See how we split the event into disjoint sub-events by incorporating the lack-
ing information about the first draw.
Thus chance of red ball remains same. In fact chance of red ball at any draw
remains 20/30. We can prove by induction. Let the statement be

(Sn) : whatever be r, g ≥ 1;P (Rn) = r
r+g

in Polya scheme starting with r
red and g green balls.

S1 and S2 are proved above: change 20 and 10 to r and g.
Suppose Sn is proved. We shall prove for Sn+1. We need to calculate P (Rn+1).
If you bring in the information about n-th draw, you still do not know the
composition of the urn and will not be able to calculate and the best way is
to reduce the problem to n-th draw in order to use the induction hypothesis.

P (Rn+1) = P (Rn+1R1) + P (Rn+1G1)

= P (R1)P (Rn+1 R1) + P (G1)P (Rn+1 G1)

Note that given R1; after the first draw you have a Polya scheme starting
with r + 1 red and g green balls and you want the chances of red now at
n-th draw which by induction hypothesis is (r + 1)/(r + g + 1). Similarly
given G1 also you can calculate getting

P (Rn+1) =
r

r + g

r + 1

r + g + 1
+

g

r + g

r

r + g + 1
=

r

r + g

Note how we formulated the induction hypothesis, if you simply formu-
lated for (20,10) data you would not have been able to use it after the first
draw, for the inductive step.

Though the chances of red at any draw remains same, the number of balls
are increasing after each draw, so which probabilities are changing? Answer:
conditional probabilities.

P (R1) =
r

(r + g)
P (R2|R1) =

(r + 1)

(r + g + 1)
>

r

(r + g)
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If you see a red ball, then chances of seeing red ball is increased. If the
second ball is also red, then chances of red at third are further increased.
This is where probability comes to life!

Our friend came from Kolkata. Suppose before starting, some one told
him that there is flu epidemic in Chennai. Let us understand our friend’s
feelings during a short duration after he lands in Chennai. If he right away
met a person with flu, he tends to think that there must really be much flu
here. The more and more flu people he meets soon after reaching here, he
assigns higher and higher chances for flu in Chennai. On the other hand if
the people he met had no flu, he tends to think that there is not that much
flu here. However, his experience has nothing to do with reality. There is a
certain percentage who have flu and the chances of seeing a person with flu
is just that fraction. [That is why I said in a short duration, you need not
worry about dynamics of spread]. Thus interpreting red as person with flu,
the model reflects precisely this phenomenon.

Let us make one more calculation.

P (R2G1) = P (G1)P (R2 G1) =
10

30

20

31

P (R1G2) = P (R1)P (G2 R1) =
20

30

10

31

Thus P (R1G2) = P (R2G1). Since P (G2) = P (G1) we see

P (R1 G2) = P (R2 G1)

In other words there is time symmetry. Given information: G at time 2; ask:
R at time 1, or, give the same information G, but at time 1, and ask the
same question R, but at time 2. You get the same answer. Only the role of
time changed; given information is same and question asked is same. Here
again probabilities come alive, because this is what we observe in practice.

Interpret red and green as genes and time in generations. Ask: what are
the chances my father has a gene R given I have gene G. Or ask: what are
the chances I have gene R given my father has gene G. Answer remains same
under certain assumptions on the genetic structure of population. Note that
information is same G, question is same R. In one case information is about
me (second generation) and question is about my father (first generation). In
the other case information is about my father (first generation) and question
is about me (second generation) — a time reversal.
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There are several interesting calculations that can be done with this urn
model, however we shall not do. Before leaving this scheme, let me assure
you how mathematics, like music, allows improvisations/embellishments.

Why 20, 10 balls? Yes, you can have r and g initial data.

Why add one ball, why not 7 balls of that color? Yes, you can; the same
phenomenon remains. But what does this signify? If you see a red ball, you
are now adding 7 red balls; so that the conditional probability of seeing red
ball now increased from 20/30 to 27/37 which is higher, more importantly,
much higher than the previous increase, namely 21/31. This is also what
happens in practice. If our Kolkata friend is a very nervous person, then the
moment he runs into one person with flu he might react ‘Oh my God, my
information is right, there is too much flu here in Chennai’; if he runs into
two persons with flu, he might even repent coming here!

Why two colors?why not more colors? Yes, can develop.

Why ball of the color seen? why not add opposite color ball? More gen-
erally why not add 3 balls of the color seen and 1 ball of the opposite color?
Yes, can be done.

Do you see how things can be improvised?

Indeed, the model of adding one ball of opposite color is also important
and is called Friedman’s urn model. Of course, the above phenomenon is no
longer true, chances of red ball at draw n depends on n. Does this model
also reflect something that we see? yes, this models ‘safety campaign’.

Interpret red as accidents and green as safety measures. In general police
are a relaxed lot and do nothing. When accidents increase, they suddenly
become active and start implementing safety measures. Once you see more
safety measures and accidents decline, then police become slack and acci-
dents start increasing. Once they increase and you see more accidents, they
once again wake up and implement safety measures.

Returning to Polya Urn scheme, we can pictorially represent the out-
comes. We can draw a tree diagram depicting the composition of the urn at
each stage and the outcomes and conditional probabilities. This is what we
shall do below starting with general (r, g) urn.

If you read the letters along any particular path, you will get outcomes.
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Probability of the event is simply product of the numbers on the branches
along the path. On each branch is written conditional probability of that
event given the past till then. At the end of each branch is written the com-
position of the urn to help you calculate probabilities for the next branch.
Initially composition is r red and g green. After green draw urn has become
[r, g + 1] etc.

[r, g]

[(r + 1), g]

[(r + 2), g]

R
r+1

r+g+1

[(r + 1), (g + 1)]G
g

r+g
+1

R
r

r+g

[r, (g + 1)]

[(r + 1), (g + 1)]

R
r

r+g+1

[r, (g + 2)]G
g+1

r+g
+1

G
g

r+
g

We shall leave urn models and proceed to the next important idea. But
before that let us collect some useful facts which we have seen and used.

Theorem: Let (Ω, p) be any probability space and B an event.

(1) P (∅) = 0 and P (∅ B) = 0
P (Ω) = 1 and P (Ω B) = 1

(2) P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2)
P (A1 ∪ A2 B) = P (A1 B) + P (A2 B)− P (A1 ∩ A2 B)

(3) if A1, . . . , An are disjoint events then
P (∪Ai) =

∑
P (Ai)

P (∪Ai B) =
∑
P (Ai B)

(4) P (Ac) = 1− P (A)
P (Ac B) = 1− P (A B)

(5) For any events A1, . . . , An

P (∪Ai) = S1 − S2 + S3 − . . .
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where

S1 =
∑

P (Ai), S2 =
∑
i<j

P (Ai ∩ Aj), S3 =
∑
i<j<k

P (Ai ∩ Aj ∩ Ak), . . .

P (∪Ai B) = S ′1 − S ′2 + S ′3 − . . .

where

S ′1 =
∑

P (AiB), S ′2 =
∑
i<j

P (Ai∩AjB), S ′3 =
∑
i<j<k

P (Ai∩Aj∩AkB), . . .

(6) (when Ω is infinite) For any sequence of disjoint events (An, n ≥ 1)

P (∪An) =
∑

P (An), P (∪An B) =
∑

P (An B)

(7) P (A1 ∩ A2 ∩ A3) = P (A1)P (A2 A1)P (A3 A1 ∩ A2)

Independence:
Example: Consider the usual deck of cards: It has four ‘suits’:

Clubs ♣; Diamonds ♦; Hearts ♥; and spades ♠
and in each suit 13 cards: A, 2, 3, . . . , 10, J,Q,K.
I pick a card at random. Thus |Ω| = 52. Let A be the event selected card is
Ace (A).. Then P (A) = 4/52. I tell you that the selected card is spades and
ask for probability of A now. Thus if B is the event: selected card is spades,
then we want P (A B). Clearly it equals 1/13. Thus

P (A B) = P (A)

The information that the event B occurred did not alter/influence the prob-
ability of A. When this happens, that is, P (A B) = P (A); equivalently
(A∩B) = P (A)P (B); it appears reasonable to say that the events are inde-
pendent.

Example: Ω = {HH,HT, TH, TT}
Probability of each outcome is 1/|Ω| = 1/4. If A is the event ‘first letter is
H’ and B is the event ‘second letter is H’ then A,B are independent.

Let us consider the experiment: Roll a fair die two times, all outcomes
equally likely. Consider the events: A, first throw is even; B, second throw
is even; C, sum of the two throws is even. Clearly

P (A) = P (B) = P (C) = 1
2
;
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P (A ∩B) = P (B ∩ C) = P (C ∩ A) = 1
4
.

Thus A,B are independent; B,C are independent; A,C are independent.
Should we say that A,B,C are independent? If you know A. and B both
occur then you know C must hold. In fact if you know about any two of
these, then you know about the third one. For example if both of A,B occur
or none of A,B occurs, then C occurs. If exactly one of A,B occurs, then
C does not. Thus we should not really say that the three are independent.
After all if you say certain things are independent, they have nothing do with
each other; if you have any information on any of them it should not reveal
about the remaining. So what fails in this example?

P (A B ∩ C) 6= P (A)P (B ∩ C), equivalently
P (A ∩B ∩ C) 6= P (A)P (B)P (C).

If we put this extra condition, we can show the intuitive feeling outlined
above is correct and A,B,C are independent. More generally we make the
following definition.

Definition: Events A1, A2, · · · , An in a probability space are independent
if for any number of them probability of their intersection equals product of
their probabilities. In symbols, the following is true: for every k ≤ n and
every 1 ≤ i1 < i2 < · · · < ik ≤ n.

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P (Ai1)P (Ai2) · · ·P (Aik)

Does this definition reflect what we had in mind? We can show the
following:

if for each i, the event Bi is either Ai or Aci , then
P (B1 ∩B2 ∩ . . . Bn) = P (B1)P (B2) · · ·P (Bn)
This is done by induction on the number of complements that appear. This
can then be used to show any information on some of these does not influence
the others. In fact the above statement is equivalent to independence of the
events (Ai : 1 ≤ i ≤ n).

Given a probability space and events, we can use the above equations
to check if they are independent events. Or we can use the requirement of
independence to assign probabilities.

For example, if we say toss a fair coin twice independently, then it means,
assign probabilities so that questions about first and second tosses are inde-
pendent. For example chances of HH is product of chances that first toss
is H multiplied by chances second toss is H. Hence P (HH) = 1/4. We are
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repeating, independently, the experiment of tossing the coin. This leads to
more general concept of repeating experiments independently.

Definition: Suppose we have experiments (Ωi, pi) for 1 ≤ i ≤ n. We
define the product experiment (Ω∗, p∗) as follows.

Ω∗ =
n∏
1

Ωi = {(ω1, · · · , ωn) : ωi ∈ Ωi}

and

p∗(ω1, · · · , ωn) =
n∏
1

pi(ωi)

This space represents performing the n experiments, one after the other,
independently. Consider Ai ⊂ Ωi, and define the events: A∗i = the set of all
outcomes in Ω∗ such that i-th coordinate is in Ai. Note that the event A∗i
in the product depends only on i-th experiment, whether an outcome of Ω∗

is in A∗i or not depends only on i-th experiment. Then in the space (Ω∗, p∗)
the events A∗1, · · · , A∗n are independent.

You must keep in mind that in defining p∗ we multiplied the probabilities
because we want events depending on different i to be independent. You
must pause and think about matters.

If all the experiments are same, then this is referred to as independent
repetitions of the one experiment. For instance, let us consider the experi-
ment of tossing a coin once. Ω = {H,T} and p(H) = θ and P (T ) = 1 − θ
where 0 < θ < 1. Thus chance of heads is θ. The experiment of tossing the
coin n times independently means the product experiment where the sample
space is Ω∗ and probabilities are given by

p(ε1, · · · , εn) = θi(1 − θ)n−i where i is the number of H in the outcome
(ε1, · · · , εn).

Let us calculate probabilities of some interesting events. A is the set of
all outcomes having exactly k heads. You see that each such outcome has
probability θk(1− θ)n−k and there are

(
n
k

)
many such outcomes. Thus

P (A) =

(
n

k

)
θk(1− θ)n−k.

Here we have tossed a coin n-times and counted number of heads. This is a
recurring phenomenon, we perform an experiment and make a measurement.
For instance, if you want to decide whether to accept a lot of bolts supplied to
your company, you need to know whether they confirm to the specifications.
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You can not test all items. You take a sample of 100 items one by one, test
and count the number of defective found. Base your decision on this number.
it is unimportant whether the first is defective or the tenth etc. If you are
trying to estimate chance of heads for a given coin, you can toss it, say n
times and if you find k heads, then k/n is a good estimate of the chance of
heads. It is unimportant where exactly the k heads appeared among the n
tosses.
These measurements are called random variables.

Definition: Let (Ω, p) be a probability space. A random variable on the
space is a real valued function. The distribution of the random variable is a
list or table giving all values of the random variable and the corresponding
probabilities; that is against the value a write the probability P (X = a), that
is P{ω : X(ω) = a}.

If random variable is simply a function on Ω why do you need a new term,
could have called it a function. Well, by using the word random variable we
draw your attention to the fact that there is a probability on Ω.

For instance, in the above example of tossing a coin n times (when noth-
ing is said, the tosses are independent), if X is the number of heads then
distribution of X is

values 0 . . . k . . . n
probabilities (1− θ)n . . .

(
n
k

)
θk(1− θ)n−k . . . θn

This distribution is called Binomial distribution; denoted B(n, θ).

We have a constitutional officer (VP) who ‘feels’ constitution is unimpor-
tant; another constitutional officer (G) who ‘feels’ no rules apply to him; a
Nobel Laureate (Economics) who ‘feels’ India had no math tradition and we
got our math from Greece, · · · . When you do problems do not stop with the
feelings like ‘easy’, ‘difficult’, ‘can do’ etc. Feelings can fool you. Take pen
and paper, think and work out problems, write solutions. You can do it.
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BVR Probability 2023 week 3

Expectation and Variance:

We play a series of games. I toss a coin. Heads up I give you one Rupee,
Tails up you give me one Rupee. Thus if X is your profit, then X = +1 if
Heads up and X = −1 if Tails up.
If chance of Heads is 2/3 and Tails is 1/3; will you play. Yes you will.
The argument is that if we play 30 games you are likely to win approxi-
mately 20 games and loose 10 so that you gain 10 Rs; or on the average
1/3 Rs per game. Of course instead of 30 games and so on we can calculate
(+1)(2/3) + (−1)(1/3) = 1/3 as expected profit per game.
If chance of Heads is 1/3 and Tails is 2/3; will you play. No, you will. not.
Similar argument applies: You expect to win (+1)(1/3) + (−1)(2/3) = −1/3
per game.
What if the coin is fair. You will think, looks fair, neither you win, nor loose
on the average.
Let us consider fair coin game but now X = +1000 if Heads up and X =
−1000 if Tails up. Clearly this is also fair, expected gain is zero. Will you
play? probability not, because it has ‘high risks‘: you may loose the first
three games (though you may win later games). In other words the random
variable has X has larger spread. The average value and spread is made
precise now.

Definition: If X is a random variable taking values {xi : i ≥ 1} with
respective probabilities {pi, i ≥ 1}; then we define the Expected value/Average
value/Mean value by the formul;a

E(X) =
∑

xipi

provide
∑
|xipi| is finite. If this last sum is not finite, we shall not define

E(X). We define the variance of X by

V ar(X) =
∑

x2
i pi − (

∑
xipi)

2 =
∑

x2
i pi − (E(X))2

when the sums are finite.

Example 1: Toss a coin once, chance of Heads in a toss is p. Let X be
the number of Heads.
Sample space: {H,T}.
Probabilities: P (H) = p;P (T ) = 1− p = q.
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Values of X are 1, 0 with probabilities p, q respectively.
Expected value: E(X) = p.
Variance: V (X) = p2 − p = pq.
This is called Bernoulli random variable. Sometimes the random variable X
taking values 1 and 0 is called Bernoulli random variable. Sometimes any
random variable that takes two values is called Bernoulli variable.

Example: Same coin above. Toss n times. Let X be the number of Heads.
Sample space: All sequences of H,T of length n.
Probability: P (ω) = pkqn−k if k is the number of Heads in ω.
random variable: X(ω) = number of H in ω.
Distribution: values {0, 1, . . . , k, . . . , n} and respective probabilities {

(
n
k

)
pkqn−k :

0 ≤ k ≤ n}.
Expected value: E(X) = np.
Variance: V (X) = npq.
Here is the calculation:

E(X) =
n∑
0

k

(
n

k

)
pkqn−k = np

n∑
1

(
n− 1

k − 1

)
pk−1qn−k

= np(p+ q)n−1 = np.

and

n∑
0

k2

(
n

k

)
pkqn−k =

n∑
0

k(k − 1)

(
n

k

)
pkqn−k +

n∑
0

k

(
n

k

)
pkqn−k

= n(n− 1)p2(p+ q)n−2 + np = n2p2 − np2 + np

so that
var(X) = n2p2 − np2 + np− n2p2 = np(1− p).

This distribution is called Binomial distribution. and any random vari-
able X having this distribution is called Binomial random variable, denoted
X ∼ B(n, p).

Example: Same coin. Toss till you get one Head and X is the number of
Tails obtained.
Sample space: {H,TH, TTH, TTTH, . . .}
Probabilities: P (T kH) = qkp.
Random variable: X(T kH) = k.
Distribution: value k with probability qkp for k = 0, 1, 2 . . . .
Expectation: E(X) = q/p.
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Variance: V (X) =?

E(X) =
∞∑
0

kqkp = p

∞∑
1

kqk

But if q + 2q2 + 3q3 + · · · = S then

S − qS =
q

1− q
=
q

p
; S =

q

p2

so that
E(X) = q/p.

This distribution is called Geometric distribution and any random variable
with this distribution is called a Geometric random variable: X ∼ G(p).
Sometimes the random variable Y = number of tosses is called Geometric
variable. Clearly Y = X + 1. For us X is G(p).

Example: Example: Same coin. Toss till you get r Heads and X is the
number of Tails obtained.
Sample space: All finite sequences of H,T with last letter H and before that
exactly (r − 1) letters are H. Probabilities: P (ω) = qkpr if ω is of length
(r + k).
Random variable: X(ω) = k if ω is of length (r + k).
Distribution: value k with probability

(
r+k−1
r−1

)
qkpr for k = 0, 1, 2 . . . .

Expectation: E(X) = rq/p.
Variance: V (X) =?
This distribution is called negative Binomial distribution and any random
variable with this distribution is called a negative Binomial random variable:
X ∼ NB(r, p). Sometimes the random variable Y = number of tosses is
called Geometric variable. Clearly Y = X + r. For us X is NB(r, p).
The probabilities are terms appearing in the Binomial expansion with nega-
tive index.

Suppose the coin has a very very small chance of heads, say 0.0001 and
we toss the coin 10000 times. What are the chances of 5 heads? of course
you can give binomial probability which is difficult to compute. When p
is very small and n is very large and np = λ > 0 then chances of value k
approximately equals e−λλk/k!. Here is the precise result:

Theorem Let Xn ∼ B(n, pn). Suppose npn → λ > 0 as n → ∞. Then
for each k

P (Xn = k)→ e−λ
λk

k!
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Proof is very simple: Let us denote λn = npn so that λn → λ. Also note that
hypothesis implies that pn → 0.

P (Xn = 0) = (1− pn)n = (1− λn
n

)n → e−λ

P (Xn = 1) = npn(1− pn)n−1 = λn (1− λn
n

)n (1− pn)−1

→ λe−λ

You can prove by induction on k that for ecery k the result holds.

Example: Let λ > 0. The distribution:
Values: k. for k = 0, 1, 2, . . .
probabilities: e−λ λ

k

k!
for k = 0, 1, 2, . . ..

is called Poisson distribution and if X has this distribution then we say X is
a Poisson random variable; X ∼ P (λ)
Unlike the previous examples, we have not given an experiment that pro-
duces this random variable. But in practice this is supposed to fit well in
several phenomena. The number of accidents during a month at a busy in-
tersection (because, a large number of cars pass through and each car can
potentially cause an accident but with a very small chance); the number of
particles emitted by a radioactive material during an hour (because there are
very large number of atoms and each can potentially fly but has a very small
chance — all other atoms are not allowing it) and so on. Thus this is very
useful model for several phenomena.

We shall study properties of expectation. why did we define expectation
only when the series is absolutely convergent? Because, there is no specific
order in which the values of the random variable are to be listed. I may
write in one order and you may list the values in a different order. When
we multiply values with probabilities and add we both should get the same
answer. Otherwise, there is a serious problem. You know that if a series is
absolutely convergent then the series can be added in any manner. Because,
we put the condition of absolute convergence before making the definition of
expectation, the order in which the values of the variable are listed does not
matter.
But if the series is convergent but not absolutely convergent, then you can
rearrange to get any pre-determined sum!
Note that any sum where all terms are non-negative can be rearranged and
added in any manner and we get the same answer. For example, suppose
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you are adding
∞∑
1

yn

where each yn ≥ 0. You can partition natural numbers into disjoint sets

Ak : k = 1, 2, 3, · · ·

You can add those yn such that n ∈ Ak only and obtain the sum. Let us say
this subtotal is zk. Now add these sub totals zk to get z. No matter how you
make the partition {Ak} and calculate you will get the same final answer.
Thus by one method if you get 25 (or∞) then you will get 25 (or∞) by any
other method. You must keep in mind that terms (yn) are non-negative.

If you think that it is your birth right to add ‘as you like’, then add the
following numbers: (1) Do row totals and add them; (2) Do column totals
and add them.

1 −1 0 0 0 0 0 · · ·
0 1 −1 0 0 0 0 · · ·
0 0 1 −1 0 0 0 · · ·
0 0 0 1 −1 0 0 · · ·
0 0 0 0 1 −1 0 · · ·
0 0 0 0 0 1 −1 · · ·
...

...
...

...
...

...
...

...
...
...

In our course we come across only mice random variables and you need not
worry about absolute convergence.

Theorem: Expectation properties

Let (Ω, p) be a probability space.
1. A random variable X has expectation iff

∑
|X(ω)|p(ω) <∞. In that

case E(X) =
∑
X(ω)p(ω).

2. If X1, · · · , Xn are rvs then so is
∑
Xi. Further if each Xi has expec-

tation, then so is
∑
Xi and E(

∑
Xi) =

∑
E(Xi)

3. if X is a rv, then so is 23X. If X has expectation, then so has 23X
and E(23X) = 23E(X).

4. Let X be a rv and f : R → R be any function. Then Y = f(X)
defined by Y (ω) = f(X(ω)) is a rv. Assuming E(X) and E(Y ) are defined
we have E(Y ) =

∑
xif(xi).
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Remember that a series of positive numbers can always be added; at the
worst the sum may be infinity.

Proof of 1: suppose X takes values {xk : k ≥ 1} with probabilities
{ck : k ≥ 1} respectively. Let us partition the sample space Ω as follows

Ak = {ω ∈ Ω : X(ω) = xk}; k = 1, 2, 3, · · ·

Note that

ck = P (X = xk) = P{ω : X(ω) = xk} =
∑
ω∈Ak

p(ω).

Also ∑
ω∈Ak

|X(ω)|p(ω) = |xk|
∑
ω∈Ak

p(ω) = |xk|ck.

From the observation made about absolute convergence,∑
|X(ω)|p(ω) =

∑
k

|xk|ck

Hence, one side is finite iff the other side is finite. Thus a necessary and
sufficient condition for expectation to be defined is that the left side above
be finite.

But if the expectation is defined, that is, left side is finite, then the
series

∑
X(ω)p(ω) is absolutely convergent. Now use the observation about

absolutely convergent series to see you can make subtotals over each Ak and
then add them. Thus you see∑

X(ω)p(ω) =
∑
k

xkck = E(X).

Proof of 2. Let us do for two rvs.
Let X and Y be random variables and Z = X + Y , that is Z(ω) =

X(ω) + Y (ω). Note that if∑
|X(ω)|p(ω) and

∑
|Y (ω)|p(ω)

are finite then using |Z(ω)| ≤ |X(ω)|+ |Y (ω)| you see∑
|Z(ω)|p(ω)
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is also finite. Thus if X and Y have expectations defined then expectation
of Z = X + Y is also defined. Clearly then∑

Z(ω)p(ω) =
∑

X(ω)p(ω) +
∑

Y (ω)p(ω)

or by using part 1 above,

E(X + Y ) = E(X) + E(Y )

3. Similarly you can show E(23X) = 23E(X).

4. Note that this is not a tautology. For example the formula is not
definition because there is no mention of distribution of Y . It is not from
part 1, because there is no ω. It is a formula to calculate E(Y ) by using the
distribution of X: no need to look at the sample space, no need to calculate
the distribution of Y either.
As we go along we shall not make too much fuss about existence etc, we
assume that the expectations we are talking about exist and proceed with
calculations.

Proof of the formula is simple. By part 1,

E(Y ) =
∑
ω

Y (ω)p(ω) =
∑
i

∑
ω:X(ω)=xi

Y (ω)p(ω) =
∑
i

f(xi)pi

You must appreciate part 1, which allowed you to prove linearity of expec-
tation. After all if you know distribution of X and Y then there is no way
of calculating distribution of X + Y ; you need more information. For exam-
ple, If I toss a fair coin and X is the number of heads obtained and Y is
the number of Tails obtained then X ∼ B(2, 1/2) and Y ∼ B(2, 1/2). Also
P (X + Y = 2) = 1 . On the other hand, consider tossing a fair coin 4 times
and X is the number of heads in the first two tosses and Y is the number of
Heads in the last two tosses. Even now X ∼ B(2, 1/2) and Y ∼ B(2, 1/2).
However now X + Y ∼ B(2, 1/2).
Thus you can not calculate the distribution of X+Y from those of X and Y .
S0 if you depended on the definition of expectation via distribution (

∑
xkpk)

then there is no way to conclude the above.

Suppose we have a rv X with mean µ. Then

V (X) = E[(X − µ)2]
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We simply take f(a) = (a− µ)2 in the above theorem:

E[(X − µ)2] =
∑

(xi − µ)2pi =
∑

x2
i pi + µ2

∑
pi − 2

∑
µxipi

=
∑

x2
i pi + µ2 − 2µ2 =

∑
x2
i pi − µ2

=
∑

x2
i pi − (

∑
xipi)

2. = .V (X)

We can also say by taking the function f(a) = a2 and simplifying that

V (X) = E(X2)− [E(X)]2

Expected number of matches:

The fact sum of expectations equals expectation of sum is a very very
useful result. Let us consider the matching problem with 52 cards and 52
envelopes. There are (52)! outcomes. Let X be the number of matches. that
is, if you take an outcome ω then X(ω) is the number of matches according to
the placement ω. This variable can take integer values {k : 0 ≤ k ≤ 52}. It
is not easy, though we did, to calculate P (X = k). It is not easy to calculate
E(X) using the definition. We shall cleverly express this as sum of variables
for each of which expectation can be calculated in a painless manner.

For 1 ≤ i ≤ 52, let Xi be the following random variable on our space:
Xi(ω) = 1 or zero according as there is match at place i or not in the
arrangement ω. Thus

X(ω) =
52∑
1

Xi(ω)

Note that Xi indicates whether there is match at place i or not and is hence
called indicator random variable. The beauty is that it takes only two values
zero and one. Thus for any i,

E(Xi) = P (Xi = 1) =
51!

52!
=

1

52

and
E(X) = 1.

A hopeless situation is rescued by the linearity of expectation. Also note that
even if you have 1000 cards instead of 52, the expected number of matches
still equals one.
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BVR Probability 2023 week 4

Chebyshev’s inequality:
Let a > 0.
(i) For any non-negative rv X we have

P (X ≥ a) ≤ E(X)

a

(ii) For a random variable X

P (|X| ≥ a) ≤ E(|X|)/a; P (|X| ≥ a) ≤ E(|X|2)/a2.

(iii) X be a rv with mean µ and variance σ2.

P (|X − µ| ≥ a) ≤ σ2

a2

It is assumed that the required Expectations are finite.
Proof of Chebyshev is simple.
(i) Let a1, a2, · · · be all the values of X with respective probabilities (pi).

P (X ≥ a) =
∑
i:ai≥a

pi ≤
∑
i:ai≥a

ai
a
pi ≤

1

a

∑
aipi =

1

a
E(X)

(ii) follows by applying (i) to |X| and |X|2. Note that the events (|X| ≥ 1)
and (|X|2 ≥ a2) are same.
(iii) follows by applying (i) to (X − µ)2. Note that E[(X − µ)2] = σ2.

height of bus:

Here is a simple special case. suppose a = 3σ then the above inequality
says

P{ω : µ− 3σ < X(ω) < µ+ 3σ} ≥ 1− 1

9
=

8

9

∼ 90%.

For example if average height of the adult (?) population of Chennai is five
feet with standard deviation equal to 1/6 (two inches), then 90% of adults
have height at most five and half feet. In particular, if you are asked to design
height of a bus so that ninety percent of adults can travel comfortably, then
five and half feet is a good suggestion.
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Weak Law of Large Numbers for coin tossing:

We shall now ask whether the mathematics reflects the intuitive ideas
with which we started. For example, when we say p (0 < p < 1) is the
chance of heads for the coin, our intuitive feeling is that in a large number of
tosses a proportion p will be heads. Carefully note, I am not saying expected
number of proportion of Heads is p; which is true and we calculated above.

We defined mathematical models, concept of independence and so on.
Can we show that actually a proportion p will be heads or proportion of
heads is getting close to p? We immediately realize that the question is not
well formulated. the proportion of heads is a random variable; there is a
non-zero chance that all tosses may result in heads. In fact the proportion of
heads takes all values 0/n, 1/n, 2/n, · · · , n/n each with positive probability.

Thus a better question is: can you show that when the number of tosses
is large then the proportion of heads is close to p with very very high prob-
ability? Yes.

Theorem WLLN:
Let Yn be the proportion of heads in n tosses of a coin whose chance of heads
in a toss equals p (0 < p < 1). Given any ε > 0,

lim
n
P (|Yn − p| ≥ ε) = 0.

More precisely,

P (|Yn − p| ≥ ε) ≤ p(1− p)
nε2

→ 0

Observe that ε being fixed, the first conclusion follows from the second.
What does this mean? You give me any error limit for p, say ε > 0 and

also give me an η > 0, then I can show you an N such that if you toss n
times (n > N) then

P (p− ε < Yn < p+ ε) ≥ 1− η

You give me any error limit, say, 0.01. Demand that observed proportion
should be in (p − 0.01, p + 0.01) with very high probability, say with prob-
ability at least 0.999. Yes, I can prescribe to you an N so that if you toss
at least so many times then the observed proportion is within the limits you
prescribed with probability at least 0.999. Think about it.
This is called Weak Law of Large Numbers for coin tossing. This is a satisfac-
tory answer confirming that maths is on right track. Since we are considering
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coin tossing now, this theorem is for coin tossing. Since this says something
about what happens in large number of tosses, this is law of large numbers.
This is ‘weak’ because there is a better theorem ‘strong’ law. Strong Law
answers the following question: Ok, you are saying that in very very large
number of tosses the proportion is close to p; can you show that if I really toss
‘infinite number of times’ then the proportion actually equals p. It may look
like a meaningless question since we can never toss infinitely many times; it
is not silly.

{such questions are not meaningless. Michelson-Morley experiments es-
sentially showed that no matter how you measure speed of light you get the
same answer. Then Einstein thought: Aha, suppose I sit on a photon and try
to measure the speed of another photon travelling parallel to me. What do
I get. since their speeds are same – whatever it may be – then the other one
should look stationary to me, speed zero, right? Where is the catch? These
are called ‘thought experiments’ and are an essential part of any thought
process.}

There is another important byproduct of this. In reality, no one tells us
the chance of heads. What this says is the following: If you toss it a large
number of times and take the observed proportion of heads, then that is a
good estimate of the unknown p. The estimate can be made close to the
actual value p with very high probability. Carefully understand this.

You might wonder, why would any one play with coin? As I said ear-
lier, the same happens whenever there are two alternatives. For example let
p be the proportion of people supporting a political party and (1 − p) the
proportion that does not support. The same philosophy above helps you to
estimate p.

Proof is simple. If Xn is the number of Heads in n tosses, then we
know Xn ∼ B(n, p) variable, so that its mean value is µ = np and variance
σ2 = npq. Since Yn = Xn/n we see, by Chebyshv

P (|Yn − p| ≥ ε) = P (|Xn − np| ≥ nε) ≤ npq

n2ε2
→ 0

Weierstrass:

We can use Chebyshev to obtain a theorem of Weierstrass. It says that
every continuous function on a closed bounded interval is very close to a
polynomial. If you tell how close you want, I can give a polynomial which is
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so close. Here is the precise statement.

Weierstrass approximation Theorem:
Let f be a continuous function on [0, 1] and ε > 0. We can find a polynomial
P (in one variable x) such that |f(x)− P (x)| < ε for every x ∈ [0, 1].

Given the function f , let us define some polynomials, one for each n ≥ 1.

Pn(x) =
n∑
k=0

f(
k

n
)

(
n

k

)
xk(1− x)n−k.

These are called Bernstein polynomials associated with f and this proof is
due to Bernstein. Note that even though you see f in the above definition;
we only used the values of f at certain points.

Observe whatever x we take

f(x)− P (x) =
∑
k

[
f(x)− f(

k

n
)

](
n

k

)
xk(1− x)n−k (∗)

We used binomial probabilities add to one. Note that if k is such that k/n is
close to x then the first term

[
f(x)− f( k

n
)
]

is small. If x is far from k/n, that
is, k is far from nx, then Chebyshev tells the second term

(
n
k

)
xk(1− x)n−k is

small — these are binomial B(n, x) probabilities far from its mean. Here is
the execution.

We are given ε > 0. Pick, using uniform continuity of f , a number δ > 0
so that

|u− v| < δ ⇒ |f(u)− f(v)| < ε/2.

Also, using the fact that a continuous function on [0, 1] is bounded fix a
number M > 0 so that |f(x)| < M for all x ∈ [0, 1].
The fix a N such that

1

δ2N
< ε; i.e. N >

1

εδ2

In what follows n > N . How did we know such choices are to be made?
Because of the rough calculations as explained in class. From (∗)

|f(x)− P (x)| ≤
∑
k

∣∣∣∣f(x)− f(
k

n
)

∣∣∣∣ (nk
)
xk(1− x)n−k
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(used |
∑
ai| ≤

∑
|ai|)

≤
∑

k:| k
n
−x|<δ

[∗ ∗ ∗] +
∑

k:| k
n
−x|≥δ

[∗ ∗ ∗]

≤ ε

2

∑
k:| k

n
−x|<δ

[binomial prob.] + 2M
∑

k:|k−nx|≥nδ

[binomial prob]

(Used choice of δ and M) First sum, being addition of some binomial prob-
abilities, is at most one. Second sum is nothing but P (|Z − nx| ≥ δ) for a
B(n, x) variable and is hence at most

nx(1− x)

n2δ2
≤ 1

4δ2n

(used that x(1− x) ≤ 1/4 for each x ∈ [0, 1])

|f(x)− P (x)| ≤ ε

2
+ 2M

1

4δ2n
≤ ε

(choice of N and n > N).
This completes the proof. Note that our choices of N , δ. and M have nothing
to do with x and so the above holds for all x ∈ [0, 1].

Graphs with large χ:

Most of the applications that we saw involve some calculations, not too
many. If you are clever and use the results you know carefully; you can
achieve more complicated things. I want to show you one such calculation of
Erdos. You should get ready and pull your energies to climb a peak.

Recall that a graph is a pair G = (V,E) where V is a finite set of points,
called vertices. E is a collection of unordered pairs of distinct vertices. Pic-
torially you can imagine V to be a set of points; join a pair of points if that
pair is in E — join by a line (or curve), called edge.

The pairs are unordered and hence there is no direction for the edge (Re-
member Tournment, it is ordered). These are called undirected graphs. Also
the edge has distinct vertices, thus a vertex is not joined to itself by a curve.
Thus our graphs have no loops. since we do not have two edges joining any
pair of vertices, one says, there are no multiple edges. thus we are considering
undirected graphs without loops and without multiple edges.
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For a graph G its chromatic number is the smallest number of colours
needed to colour the vertices so that no edge gets the same colour for its two
end vertices. This is denoted by χ(G). Thus if χ(G) = 6 you can partition
the set of vertices V into six disjoint sets so that for any edge its two vertices
are in different sets; equivalently, if you take one of these six sets and take
two points from it, then they are not joined.

Let k ≥ 3. A sequence of vertices (v1, v2, · · · , vk) is called a cycle if all
the pairs (v1, v2); (v2, v3); · · · , (vk−1, vk); (vk, v1) are edges. It is called a cycle
of length k. Note that vk, v1 are joined. Also note k ≥ 3. Thus edges are not
cycles.

Graphs with few edges can be coloured with few colours. If the chromatic
number is very large then there must be lots of connections in the graph and
some believed that the graph must then possess small cycles. However this
is not the case. there is no relations between these two.

Theorem Erdös:
Let k ≥ 1 and l ≥ 3 be integers. then it is possible to make a graph whose
chromatic number is at least k and has no cycles of length smaller than l.

This is one of the first results that led to the rich theory of Random
Graphs or Erdös-Renyi graphs. In a sense this is the beginning of random
graph theory.

Chromatic number χ(g) is very difficult to handle. We define the notion
of independent set. For a graph g, a set S of its vertices is called independent
set if no two vertices in S are joined. By α(g) we denote the cardinality of
largest possible independent set. More precisely, if g = (V,E) is the graph,
then

α(g) = max{|S| : S ⊂ V ;S independent}

Since we are considering graphs with finite number of vertices, the above
quantity is well defined. Before we proceed we make a simple observation to
convince you that information about α tells you some thing about χ.

We claim that for any graph g = (V,E)

|V | ≤ α(g)χ(g); i.e., χ(g) ≥ |V |/α(g) (F)

Indeed, if χ(g) = c then colour the vertices with c colours and put Vi to be
the set of vertices receiving colour i for 1 ≤ i ≤ c. Thus we have a partition
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of V into c sets, in particular |V | =
∑
|Vi|. Each Vi is an independent set

because no two vertices of the same colour are joined. Thus |Vi| ≤ α(g) for
each i. adding over i we get |V | ≤ c α(g) as stated.
The plan of the proof is the following.

For n ≥ 4, consider the collection of all graphs on n the vertices {1, 2, · · · , n}.
Let Gn be the bag containing these graphs. Line up all these bags.

G4; G5, · · · , · · · , Gn, · · · · · ·

(♣). We show that after some stage every bag contains plenty of graphs
without small cycles.
(♦). We show that after some stage every bag contains plenty of graphs
which have only small independent sets. Remember that (F) implies these
graphs have large χ value.
(♥). We make sure that both the above hold for some graphs.
(♠). Take one such graph g as above. Kill all unwanted cycles by removing
one vertex from each such cycle, you will be removing only few vertices so
that the resulting graph g∗ is still large and see its chromatic number. Since
independent sets will still be small, hopefully chromatic number will be large.

How do we plan to estimate above quantities? — by using probability.
On each Gn we put a probability and use the inequalities we are familiar
with – make each edge with some probability. Let us consider Gn. Suppose
someone gives us a number 0 < p < 1. Here is a probability on the set Gn:
choose each edge, independent of others, with probability p.
Equivalently take any pair of vertices, toss a coin whose chance of heads is
p, if heads join these two vertices, if tails do not join. do this for each of the
n(n− 1)/2 pairs.
Equivalently, take any graph g ∈ Gn. If it has a edges then probability of
this outcome g is

Prob(g) = paqb; b =
n(n− 1)

2
− a.

equipped with this probability, this bag is denoted (Gn; p), Erdös-Renyi ran-
dom graph model (with parameter p). But remember unless I tell you what
p you should take, you have no model. To execute the plan mentioned, fix a
number θ with 0 < θ < 1/l. In other words fix any number strictly between
zero and 1/l and name it θ. this number will not change till the proof ends.
Given n ≥ 4 we take p = nθ−1. Thus we have a probability space (Gn, p)
with this p as mentioned above. Strictly speaking we should have named
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it as (Gn, pn). No need to get confused, but as long as you remember that
p depends on n, we need not tax our notation with suffixes. Whenever we
calculate probabilities of events in Gn we use this probability.

for any graph g, let X(g) = number of cycles of length at most l in the
graph g. These are unwanted cycles. Observe that X can be regarded as a
random variable on each Gn. Strictly speaking we should restrict definition
of X to Gn, name it Xn and regard this as a random variable on Gn. But no
need to tax our brains as long as we understand.

The first step is made precise by showing the following: There is an n0

such that for n > n0 we have

on Gn; P (X ≥ n/2) < 1/2. (♣)

The second step is made precise as follows. define xn = b 3
pn

log(2n)c. We
show there is an integer n1 such that if n > n1, then

on Gn P (α ≥ xn) < 1/2. (♦)

Third step is executed as follows. Since the sum of the above two proba-
bilities is less than one,

n > max(n0, n1) −→ ∃g ∈ Gn, X(g) < n/2, α(g) < xn. (♥)

The final step is executed as follows: Note that g has n number of vertices;
it has at most n/2 many unwanted cycles (cycles of length at most l). We
shall now destroy these unwanted cycles. Take each such cycle and remove
one vertex that appears in that cycle. We have thus removed at most n/2
many vertices. Let g∗ be the graph g restricted to these vertices. it has
the undeleted vertices as the vertex set and any pair here is joined iff it was
joined in g. This graph g∗ has no unwanted cycles – Then it would have been
a cycle earlier too and how come no vertex in this cycle is removed?

Moreover, an independent set here is independent in g as well. Thus

number of vertices in g∗ is at least n/2;
g∗ has no unwanted cycles;
α(g∗) ≤ α(g) ≤ xn ≤ 3

pn
log(2n) = 3n1−θ log(2n).

Let us now see χ(g∗). By (F)

χ(g∗) ≥ n/2

xn
≥ n

6n1−θ log(2n)
=

nθ

6 log(2n)
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Remember this is true for any n > max(n0, n1). Since the last quantity in the
above display increases to infinity, we can choose such a large n and g ∈ Gn

so that that χ(g∗) > k.
This completes the proof. Need to execute the first two steps as made precise
above.

Let us understand X in simpler terms. If Ni(g) is the number of cycles
of length i in g, then we have

X(g) =
l∑

i=3

Ni(g).

In turn, Ni can be expressed in simpler terms as follows. Take a sequence
s = (v1, · · · , vi) of i vertices. Define Is(g) to be one or zero according as
(v1, · · · , vi) is a cycle in g or not. Then we have

Ni(g) ≤
∑
s:|s|=i

Is(g)

Here the sum is over all sequences s of length |s| = i consisting of distinct
vertices. The reason for inequality is that on right side one i-cycle is counted
several times. For example (v1, v2, · · · , vi) is the same cycle as (v2, · · · , vn, v1).

E(Is) = P (Is = 1) = pin

joining each of the pairs (vj, vj+1), including (vi, v1) is done with probability
pn and independently. Also the number of summands is less than ni. Hence

E(Ni) ≤ nipin = ninθi−i = nθi.

Finally,

E(X) ≤
l∑
3

nθi ≤ lnθl.

In particular, by Chebyshev, on Gn,

P (X ≥ n/2) ≤ E(X)

n/2
≤ 2lnθl−1 → 0

because θl − 1 < 0. Thus there is an n0 such that

n ≥ n0 ⇒ P (X ≥ n/2) < 1/2. (♣)

Now let us understand α. Keep in mind we fix n and discuss Gn. Thus
α is random variable on Gn. Let us take an integer x > 1. We shall suggest,
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later, what x to take. Note that α(g) ≥ x iff there is an independent set of
size x in g.

{g : α(g) ≥ x} =
⋃

S:|S|=x

AS; AS = {g : S independent in g}

P (AS) = (1− pn)x(x−1)/2

(each of the x(x− 1)/2 pairs in S are not joined)

≤ e−pnx(x−1)/2

(used the inequality 1 − p ≤ e−p) How many terms are there in the union?
At most

(
n
x

)
≤ nx. Using P (∪AS) ≤

∑
P (AS), we get

P (α ≥ x) ≤ nxe−pnx(x−1)/2 = [ne−pn(x−1)/2]x.

I want to make a choice of x so that the quantity in brackets above is smaller
than half. That is want

ne−pn(x−1)/2 < 1/2; i.e. x > 1 +
2

pn
log(2n).

Take

xn = b 3

pn
log(2n)c bcc = greatest integer ≤ c. (•)

to convince you this will do, I need to show

b 3
pn

log(2n)c > 1 + 2
pn

log(2n), this is true because

3
pn

log(2n) > 2 + 2
pn

log(2n) this is true because

log(2n) > 2pn (for all large n). Remember 0 < pn < 1.

Thus, with our choice of xn, we have on Gn;

P (α ≥ xn) ≤ (1/2)xn

Since xn ↑ ∞ the above quantity converges to zero executing (♦) This com-
pletes proof of the Theorem.

Note that as n increases pn gets smaller, giving only few connections in
Gn.
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joint distribution:

If we have two random variables on a probability space and look at their
distributions separately, We can not understand any relationships that my
exist between the random variables.

Scenario 1:
Let us toss a fair coin independently twice. Then outcomes are

HH,HT, TH, TT

each probability 1/4.
Let X be number of Heads and Y be number of tails. Then X and Y

have the same distribution:

Values: 0, 1, 2. probabilities: 1/4, 1/2, 1/4.

The fact that X + Y = 2 is not clear when we look at the distributions.
To understand two random variables fully, we need to consider their joint

distribution. Just as distribution of one random variable is a table giving
values along with respective probabilities; joint distribution of (X, Y ) is table
giving values of the pair and corresponding probabilities.

Method 1:
Just like one r.v., suppose we plot the values of the pair (X, Y ) along

with their corresponding probabilities.

values probabilities
(0, 2) 1/4
(1, 1) 1/2
(2, 0) 1/4

Then it is clear that numbers in each pair add to two.

Method 2:
You can present the same table as a bivariate table as follows. the val-

ues of X are in the left vertical margin. The values of Y are in the top
horizontal margin. The (i, j)-th entry in the table is the probability that
(X = i, Y = j). The bottom horizontal margin are the column totals and
the right vertical margin are the row sums.

If you read the top and bottom margins then you see the distribution of
Y . If you read the left and right vertical margins then you see the distribution
of X.
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X\Y 0 1 2 total

0 0 0 1/4 1/4

1 0 1/2 0 1/2

2 1/4 0 0 1/4

total 1/4 1/2 1/4 1

Even now it is clear that only those pairs of values that add to two have
positive probability and others have probability zero.

Method 1 has the advantage that only those pairs which have non-zero
probability are listed, unnecessary pairs are not listed. However if some one
asks you what are the possible values of X alone; you need to see each pair
and pick up the first coordinate, time consuming. Of course, in the above
example it is simple but in general it is not so.

Method 2 appears a neater presentation, though there are several zeros
in the matrix of probabilities. However you can immediately understand,
without any calculation, the possible values of X and their probabilities:
just read the top and bottom margins. Similarly for Y . Thus by looking at
this table, you can not only understand the pair (X, Y ) but also X alone
and Y alone too without any further work. You will be able to detect some
interesting phenomena too by just staring at the table. We see now.

Consider tossing a fair coin four times. let X denote the number of heads
in the first two tosses and Y the number of heads in the last two tosses.

We shall not describe method 1; it has nine tuples with corresponding
probabilities. here is method 2.

X\Y 0 1 2 total

0 1/16 1/8 1/16 1/4

1 1/8 1/4 1/8 1/2

2 1/16 1/8 1/16 1/4

total 1/4 1/2 1/4 1
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The table immediately tells you another interesting feature: product of the
marginals gives the corresponding entry in the matrix. More precisely

i-th row j-th column entry = (i-th row total) · (j-th column total).

Such a feature would not be easily detectable if we used method 1.

joint distribution of two rvs X, Y defined on a space is a bivariate table
giving values of X along the first vertical margin and values of Y along the
top horizontal margin and the (a, b)-th entry of the table is the probability
pab = P (ω : X(ω) = a, Y (ω) = b)

If you look at the row sums
∑

b pab you get the probability P (X = a).
Thus if you enlarge your table by adding row and column totals, then reading
the vertical margins gives you the distribution of X, called marginal distri-
bution of X. Similarly the horizontal margins of the table gives you the
distribution of Y , called the marginal distribution of Y .

You must keep in mind that the marginal distributions are indeed distri-
butions. The adjective ‘marginal’ draws your attention to the fact that there
are other variables and they had a joint distribution and by looking at the
‘appropriate’ marginal we got the distribution of X.

Independence of rv:

This is a new definition but there is no new idea.
Two rvs X, Y defined on a space are independent if they have nothing

to do with each other; meaning answer to a question about one rv is not
influenced when information about the other is revealed. Equivalently, if A
is an event described by X and B is an event described by Y , then A,B are
independent. Here is the precise definition.

Two rvs X, Y defined on a space are independent if for every values a of X
and b of Y ; P (X = a, Y = b) = P (X = a)P (Y = b)

We do not have to say values of X and value of Y , because in the contrary
case both sides are zero, equality holds. Of course, did we put down what
we have in mind? After all, if you take any set of values of X, say S and any
set of values of Y , say T then we can define two events: A = {ω : X(ω) ∈ S}
and B = {ω : Y (ω) ∈ T}. Does sour definition show that these two events
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are independent? Yes

P (X ∈ S;Y ∈ T ) =
∑

a∈S,b∈T

P (X = a, Y = b) =
∑

a∈S,b∈T

P (X = a)P (Y = b)

=
∑
a∈S

∑
b∈T

P (X = a)P (Y = b) =
∑
a∈S

P (X = a)P (Y ∈ T )

= P (X ∈ S)P (Y ∈ T )

finitely many rvs:

Suppose we have finitely many rvs X1, · · · , Xk on a probability space.
We can talk about the joint distribution of (X1, · · · , Xk). It is a table giving
all the k-tuples (a1, · · · , ak) of possible values of these rvs and against such
a tuple, its probability P (X1 = a1, · · · , Xk = ak).

The rvs (X1, · · · , Xk) defined on a space are independent if for every
k-tuple as above

P (X1 = a1, · · · , Xk = ak) = P (X1 = a1) · · ·P (Xk = ak)

. Of course, even if a k-tuple of numbers is not a possible value of our rvs,
the above equation remains true because both sides then are zero.

Just as in the case of two rvs, we can show that if S1, · · · , Sk are subsets
of the values of the rvs then independence implies

P (X1 ∈ S1, · · · , Xk ∈ Sk) = P (X1 ∈ S1) · · ·P (Xk ∈ Sk)

. Indeed,
The r.v. X1, X2, · · · , Xk are independent iff for any S1, S2, · · · , Sk ⊂ R

where Si is a subset of the possible values of Xi

P (Xi ∈ Si ∀ i) =
k

Π
1
P (Xi ∈ Si)

If X1, · · · , Xk are independent then any sub collection is also independent.
For example X2, X4, X7 are independent.

This follows by taking some of the sets Si above to be Ω, the sample
space.

Digression: table

We have been using the word table to describe distributions. It is not
necessary to use this word.

51



As in the case of one rv, if we have k random variables X1, · · · , Xk then
their distribution is the function defined on Rk as follows:

f(a1, · · · , ak) = P{ω : Xi(ω) = ai ∀ i} (a1, · · · , ak) ∈ Rk

This is called joint probability mass function (in order not to be confused
with another function we come across later) of the k variables X1, · · · , Xk.
Since Ω is countable, we see that for only countably many k-tuples, the event
in the display above is non-empty. Our earlier description used only these
tuples in the table. In the second method we used a ‘box’ of values for the
tuple. Think about it.

expectation of ϕ(X1, · · · , Xk):

Suppose we have r.v. X1, · · · , Xk defined on a probability space (Ω, p).
Suppose that ϕ : Rk → R is a function. We can define a random variable Z
on Ω as follows.

Z(ω) = ϕ(X1(ω), · · · , Xk (ω)) = ϕo(X1, · · · , Xk)(ω).

We can think of calculating E(Z) in several ways.
In what follows we assume that all sums, we are dealing with, are abso-

lutely convergent.

(A) We can calculate the distribution of Z; say takes values (zn) with
respective probabilities (αn). Then compute

E(Z) =
∑
n

znαn

(B) You already have the joint distribution of (X1, · · · , Xk) before you
— say this tuple takes values {(a1, · · · , ak)} with respective probabilities
{p(a1, · · · , ak)}. No need to calculate distribution of Z. Just compute

E(Z) =
∑

(a1,··· ,ak)

ϕ(a1, · · · , ak)p(a1, · · · , ak)

(C). Do not calculate any distribution whatsoever. Look at sample space
and compute

E(Z) =
∑
ω

Z(ω)p(ω) =
∑
ω

Z(ω)p(ω)
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Are these equivalent? Do they give same answer? Note that (A) is
definition and the others are not.
Yes. they all give the same answer. We had already seen, in one variable
set-up that (A) and (C) are equivalent. Similar proof shows that (B) and
(C) are also equivalent. Here is how. Start with (C). Do the sum in two
ways. First for each fixed tuple (a1, · · · , ak); sum or subtotal only over those
ω in the set

{X1 = a1, · · · , Xk = ak)

Then add all these subtotals, you get (B).

if you know a little analysis, you can actually show that if one series above
converges absolutely, then so do the others. Thus absolute convergence of
any one of the above three series can be taken towards the existence of E(Z)
and then any one of the three series above can be used as definition of E(Z).

The equivalence of the above three will be referred to as substitution
formula or change of variable formula.

If X and Y are independent random variables on a probability space,
E(X) and E(Y ) defined; Then E(XY ) is also defined and

E(XY ) = E(X)E(Y )

Let us not spend time on existence part. Towards the proof of the equality,
use the function ϕ(a, b) = a.b in substitution rule to see

E(XY ) =
∑
a,b

ϕ(a, b)P (X = a, Y = b)

Use independence

=
∑
a,b

a b P (X = a)P (Y = b)

sum w.r.t. b;

=
∑
a

aP (X = a)E(Y ) = E(X)E(Y ).

Covariance, correlation:

if two random variables X, Y are independent then we have

E(XY ) = E(X)E(Y )
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It appears reasonable to take E(XY ) − E(X)E(Y ) as a measure of non-
independence or relatedness.

Definition: covariance between X, Y is defined as

Cov(X, Y ) = σX,Y = E(XY )− E(X)E(Y )

Correlation between X and Y is defined as

correlation(X, Y ) = ρX,Y =
σX,Y
σXσY

ρ is defined only when. σX 6= 0 and σY 6= 0. The relation between two
quantities should not depend on the units used to measure the quantities.
Suppose I measure heights X in inches and weights Y n Kg and find correla-
tion. You find heights in feet and weights in Kg. Then all my quantities X
are 12 times yours and you will quickly see, if I did not have the denominator
we get different answers.

If X, Y are independent then cov(X, Y ) = 0. However cov(X, Y ) = 0
does not mean that they are independent.
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theorem:
1. σ2

X = 0 iff there is a number a such that P (X = a) = 1
2.If X1, . . . , Xn are independent then V ar(

∑
Xi) =

∑
V ar(Xi)

3. More generally, for any random variables X1, . . . , Xn defined on a space
V ar(

∑
i

Xi) =
∑
i

V ar(Xi) + 2
∑
i<j

Cov(Xi, Xj)

4. If ρ is the correlation between X and Y , then −1 ≤ ρ ≤ 1.

Remember when we talk about variances etc, we assume they exist.
Proof:

(1) Let E(X) = µ. Since (X − µ)2 takes nonnegative values, the hypothesis
E[(X − µ)2] = σ2 = 0 implies P{(X − µ)2 = 0} = 1. Thus P (X = µ) = 1.
Conversely, if P (X = a) = 1, then µ = E(X) = a and (X − µ)2 = 0 showing
σ2 = 0.
(2) If E(Xi) = µi, then E(

∑
Xi) =

∑
µi. Also by independence, E(XiXj) =

µiµj for i 6= j, so that

E{(Xi − µi)(Xj − µj)} = 0

V ar(
∑

Xi) = E{(
∑

Xi −
∑

µi)
2} = E{[

∑
(Xi − µi)]2}

= E{
∑

(Xi − µi)2 + 2
∑
i<j

(Xi − µi)(Xj − µj)}

=
∑

V ar(Xi)

because the crossproduct terms have expectation zero by independence of
the random variables.

E[(Xi − µi)(Xj − µj)] = E(XiXj)− E(Xiµj)− E(Xjµi) + µiµj = 0

(3) The same proof above shows this also, use E{(Xi − µi)(Xj − µj)} =
Cov(Xi, Xj)
(4) Suppose P (X = xi, Y = yj) = pij. Asume E(X) = E(Y ) = 0. By change
of variable formula and Cauchy-Schwarz

|E(XY )| = |
∑
i,j

xiyjpij| ≤
∑
i,j

|xi| |yj|pij ≤
∑
i,j

(|xi|
√
pij)(|yj|

√
pij)

≤
√∑

i

∑
j

x2
i pij

√∑
j

∑
i

y2
jpij = σXσY .
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Thus |Cov(X, Y )| ≤ σXσY showing |ρ| ≤ 1. In the general case whern means
are not zero, E(X) = µ and E(Y ) = ν, apply this result to (X − µ) and
(Y − ν) to complete the proof.
Here are some consequences

Theorem WLLN
SupposeX1, . . . , Xn are independent random variables with common mean

µ and common variance σ2 > 0, then

P

{∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

}
≤ σ2

nε2

In particular suppose we have an infinite sequence {Xi, i ≥ 1} such that for
each n, the variables (Xi, 1 ≤ i ≤ n) satisfy the above hypothesis. Then we
have, for each ε > 0,

P

{∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

}
→ 0 as n→∞

This is known as the Weak Law of Large numbers. Of course if the random
variables all have same distribution (which has finite variance) then they
have the same mean and variance.

The content of the theorem, just as in coin tossing case, is: the average
gets as close to the mean as you want with as high probability as you want
provided n is large.

In particular if you take sample (with replacement) X1, . . . , Xn from a
population, then the average

∑
Xi/n has the interpretation of observed av-

erage. Thus if the sample size is large then the observed average is close
to population mean. In particular, if you did not know the mean, then the
observed average is a good estimate of the population mean.

The earlier WLLN for coin tossing is a special case of this, by taking each
Xi as one with probability p and 0 with probability q = 1− p.

Definition: An infinite sequence of random variables (Xi, i ≥ 1} defined
on a space is said to be an independent sequence if for each n the variables
(Xi, 1 ≤ i ≤ n) are independent.

Thus the hypothesis of the theorem amounts to saying that the infinite
sequence of variables are independent. Unfortunately we can not give good
examples now because we are considering only discrete spaces, that is, count-
able spaces Ω. Later we will see. However, we can reformulate the theorem in
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terms of sampling and sample size (in place of tossing and number of tosses)
along the lines of earlier WLLN.

Of course proof of WLLN is simply Chebyshev. Note that if σ2 = 0 then,
your random variables are ‘essentially’ constant and the average is also ‘es-
sentially’ constant and the WLLN holds, you need not use Chebyshev.

Negative Binomial:
Let us consider X, number of tails before r-th head in coin tossing. We know
X ∼ NB(r, p). Here is an easy way to obtain its mean and variance. First
define Xi to be the number of Tails between (i− 1)-th and i-th Head. Thus
X1 is the number of Tails before the first Head and X =

∑
Xi.

We claim (Xi, 1 ≤ i ≤ r) are independent G(p) random variables.
Since we know for such a geometric variable expectation is q/p and variance
is q/p2 we immediately get

E(X) = r
q

p
V ar(X) = r

q

p2

To prove the stated independence is easy. The event (X1 = m1, . . . , Xr = mr)
has only one out come Tm1HTm2H . . . TmrH. Thus

P (X1 = m1, . . . , Xr = mr) = qm1pqm2p . . . qmrp (♠)

Adding over all the m2, . . .mr we get P (X1 = m1) = qm1p showing X1 ∼
G(p). Similarly adding over all mj except mi we get Xi ∼ G(p) The equation
(♠) now in just

P (X1 = m1, . . . , Xr = mr) = P (X1 = m1) · · ·P (Xr = mr)

Hypergeometric:
Consider a box of items of which N1 are defective and N2 are good and
N1 +N2 = N . We take a sample of size n without replacement from this box
and count the number X of defectives in the sample. here is the distribution
of X:

P (X = k) =

(
N1

k

)(
N2

n−k

)(
N
n

) ; 0 ≤ k ≤ n

Observe that if we have 10 defective, 30 good and take a sample of size 13,
then number of defectives in the sample can not be 13. But there is no need
to worry because the probability we have written against it above is zero.
This distribution is called Hypergeometric distribution and a random
variable having this distribution as Hypergeometric random variable
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We shall now calculate its mean and variance. Let Xi denote one or
zero according as the i-th item of the sample is defective or good. Thus
X =

∑
Xi. Clearly

P (Xi = 1) =
N1 (N − 1)(N − 2) · · · (N − n+ 1)

N(N − 1) · · · (N − n+ 1)
=
N1

N

For i 6= j

P (Xi = 1, Xj = 1) =
N1(N1 − 1)(N − 2)(N − 3) · · · (N − n+ 1)

N(N − 1) · · · (N − n+ 1)

=
N1(N1 − 1)

N(N − 1)

Thus for each i

E(Xi) =
N1

N
; .V ar(Xi) =

N1

N
(1− N1

N
)

Also for i 6= j

Cov(Xi, Xj) =
N1(N1 − 1)

N(N − 1)
− N1

N

N1

N
=
N1

N

N1 −N
N(N − 1)

Thus

E(X) = n
N1

N

from the formulae for variance of sum we have

V ar(X) = n
N1

N
(1− N1

N
) + 2

(
n

2

)
N1

N

N1 −N
N(N − 1)

= n
N1

N
(1− N1

N
) − n(n− 1)

N1

N
(1− N1

N
)

1

N − 1

= n
N1

N
(1− N1

N
) {1− n− 1

N − 1
}

= n
N1

N
(1− N1

N
)
N − n
N − 1

sums of independent random variables:

On a particular day, If the number X of accidents in Chennai is P (λ)
and the number Y of accidents in Bombay is P (µ); one would like to know
the distribution of the total number of accidents: X + Y . It is reasonable to
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assume that X and Y are independent.

If X ∼ P (λ), and Y ∼ P (µ) are independent then X + Y ∼ P (λ+ µ)
Indeed

P (X + Y = n) = P (X = k, Y = n− k for some 0 ≤ k ≤ n)

n∑
k=0

e−λ
λk

k!
e−µ

µn−k

(n− k)!
= e−(λ+µ) (λ+ µ)n

n!

If X ∼ B(n, p); Y ∼ B(m, p) independent then X + Y ∼ B(n+m, p)
Indeed, proceeding as above, for k ≤ m+ n

P (X+Y = k) = P (X = i, Y = j for some 0 ≤ i ≤ n; 0 ≤ j ≤ m; i+j = k)

=
∑
i+j=k

(
n

i

)
piqn−i

(
m

j

)
pjqm−j = pkqm+n−k

(
m+ n

k

)
We have already seen

X ∼ G(p); Y ∼ G(p) independent, then X + Y ∼ NB(2, p).

These results extend to finite sums. For example If X1, X2, X3 are inde-
pendent then use, X1 + X2, X3 are independent. In fact if X1, . . . , Xn are
independent and Y depends on (X1, X9) and Z depends on (X3, X5) and W
depends on (X2, X4, X8) then Y, Z,W are independent. Here is a sample of
such a result.

If X1, X2, X3, X4 are independent and if f and g are functions of two real
variables then the random variables Y = f(X1, X2) and Z = g(X3, X4) are
independent.
Instead of denoting values by xi, yj, zk, wl etc we just denote by i, j, k, l. If
you do not like please feel free to use as you wish.

P (Y = m,Z = n) =

P

[⋃
ijkl

(X1 = i,X2 = j,X3 = k,X4 = l) : f(i, j) = m; g(k, l) = n

]

=
∑
{P (X1 = i,X2 = j,X3 = k,X4 = l) : f(i, j) = m; g(k, l) = n}

sum is over i, j, k, l satisfying the conditions mentioned in the brackets.

=
∑
{P (X1 = i,X2 = j)P (X3 = k,X4 = l) : f(i, j) = m; g(k, l) = n}
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by independence of (Xi)

= P (Y = m)P (Z = n)

sum over i, j and then over k, l.

Conditional distributions and Conditional expectations:

You now have all the basic material: probability and conditional probabil-
ity; random variables; expectation and variance; joint distribution of random
variables.
What comes next is combination of conditional probability with other con-
cepts leading to conditional distribution, conditional expectation. This is
a truly probabilistic concept and is indeed fundamental to several topics in
probability (as well as its applications).

Consider the experiment: Take sample of size two with replacement from
{0, 1, 2}, equivalently, pick two numbers independently at random from these
three. LetX be the maximum of the sample and Y is the second chosen point.
Sample space is

Ω = {00; 01; 02; 10; 11; 12; 20; 21; 22}

Each outcome has probability 1/9.
The joint distribution of (X, Y ) is given below.

X\Y 0 1 2 total

0 1/9 0 0 1/9

1 1/9 2/9 0 3/9

2 1/9 1/9 3/9 5/9

total 3/9 3/9 3/9 1

Sometimes we have partial information. For example you have info that
X = 2. You would wonder what could Y be? Of course, when you are
dealing with chance variables such a question does not mean you should tell
a particular value of Y . You would like to know the distribution of Y . Of
course Y takes values 0, 1, 2 and against each value we should now list the
conditional probabilities: P (Y = 0 X = 2); (Y = 1 X = 2);P (Y = 2 X = 2).
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Thus conditional distributions of Y are as follows:

Given X = 0:

values of Y : 0 1 2
Conditional probabilities: 1 0 0

Given X = 1:

values of Y : 0 1 2
Conditional probabilities: 1/3 2/3 0

Given X = 2:

values of Y : 0 1 2
Conditional probabilities: 1/5 1/5 3/5

These are called conditional distributions of Y for the values of X given as
shown. Note that these conditional probabilities do add to one in each case.
You can calculate conditional expectations which means expectations under
these conditional distributions. Thus E(Y X = 0), conditional expectation
of Y given X = 0 is 0.

Similarly E(Y X = 1) = 2/3 and E(Y X = 2) = 7/5.

Remember distribution of Y is only one; whereas conditional distribu-
tions are many; one for each given value of X. Similarly expectation is just
a number where as conditional expectations of Y are many numbers; one for
each given value of X.

We want to summarize all these conditional expectations into one quan-
tity; not a number but a function Z. It will be defined as a function of
X. When X takes a value x this function takes the number E(Y X = x)
as its value. Thus for all sample points ω for which X(ω) = a we have
the same value for the function Z. This Z is called conditional expectation
of Y given X, denoted E(Y X). You think of it as a function of X; say, ϕoX.

So keep in mind E(Y X) is not a number; it is a function of X. There is
again no confusion because we only said ‘expectation of Y given X’ (sounds
like an incomplete sentence, we only said given X but did not say what is
it that is given about X) and did not say any specific value of X. Hence it
must encode all the information and hence it is the function Z rather than
any one of the earlier numbers.
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Since it is a function of X, it is a random variable. So it makes sense to
take its expectation once again!

Let us quickly do all these considerations in generality.
Suppose (Ω, p) is a probability space and X, Y are random variables. Sup-

pose their joint distribution, given in a bivariate table is as follows.

X takes values {xi : i = 1, 2, · · · } may be finite or infinite set.
Y takes values {yj : j = 1, 2, · · · } may be finite or infinite set.

pij = P (X = xi, Y = yj)

The so called marginal totals are the following.

pi• =
∑
j

pij; p•j =
∑
i

pij; i, j ≥ 1

Thus the distribution of X and Y are given by

P (X = xi) = pi• : i = 1, 2, · · ·

P (Y = yj) = p•j : j = 1, 2, · · · .

Now we can define the conditional distribution of Y given X = xi:

P (Y = yj X = xi) =
pij
pi•

: j = 1, 2, · · · .

this is defined for each i = 1, 2, · · · and whatever be i all the numbers above
add to one when summed over j. You must remember i and j are on different
footing here. In the above display, i is fixed. j varies.

E(Y X = xi) =
∑
j

yj
pij
pi•

Finally E(Y X) is the following function: When X takes value xi, it takes
the value E(Y X = xi). If you want what exactly is the function, it is the
following on the sample space.

E(Y X) (ω) = E(Y X = a); where a = X(ω)

Thus the function E(Y X) takes same value at two sample points ω and η
if X(ω) = X(η). As a consequence it is a function of X, namely

E(Y X) = ϕoX; where ϕ(xi) = E(Y X = xi)
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Of course we have not defined the function ϕ at real numbers other than
the xi s. But if you are worried about that put ϕ(x) = 0 if x is not any of
the numbers {xi}. These do not matter. After all when when you compose
two functions f(g(x)), values of f on points in the range of g matter. Think
about it.

As a consequence of the change of variable rule

E[E(Y X)] =
∑
i

ϕ(xi)P (X = xi)

=
∑
i

∑
j

yj
pij
pi•
pi• =

∑
j

∑
i

yjpij =
∑
j

yjp•j

=
∑
j

yjP (Y = yj) = E(Y )

Thus we have proved

E[E(Y X)] = E(Y )

This is a very useful formula. It allows you to calculate expected values in
complicated situations. here is an example.

Example:

Imagine there is a maze with five doors: 1,2,3,4,5.
If rat exits through 1, it is out in one minute. If exits through 2, then

it it is out in 2 minutes. If exits through 3, it travels for 3 minutes and
then returns to the starting place. similaly, If it exits through 4 (or 5), then
returns to the starting place after 4 (or 5) minutes.

Assume that the rat always chooses one of the four doors at random.
What is the expected time to exit from the maze?

You can write down the sample points, for each sample point calculate
its probability p(ω) and the time Y (ω) to exit for that sample point ω and
calculate

∑
Y (ω)p(ω).

Every sample point is a finite (possibly empty) sequence of symbols 3,4,5
followed by a last symbol which is either 1 or 2.
Here is a simpler way. Let Y be the time to exit and X be the first choice of
door. Suppose E(Y ) = a. Clearly

E(Y X = 1) = 1; E(Y X = 2) = 2. E(Y X = 3) = 3 + a
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because the conditional distribution of Y given X = 3 is same as the distri-
bution of 3 + Y . similarly E(Y X = 4) = 4 + a. E(Y X = 5) = 5 + a. Thus
using the earlier formula,

a = E(Y ) = E[E(Y X)] =

1 + 2 + 3 + a+ 4 + a+ 5 + a

5
= (15 + 3a)/5

or
a = 15/2

Of course you might wonder if this is an artificial example. No. If some one
says that rats learn from experience, how do you test if this is right? Here
is one way. you conduct above experiment on several rats several times on
each. If they always take time close to above value then obviously they are
not learning. If the time is visibly shorter after some repetitions, then you
have reason to believe that they are learning.

The conditional distribution of Y given X = xi is a new definition, not a
new concept. it is just concept of distribution and conditional probability of
events. Conditional expectation E(Y X = xi) is a new definition, not a new
concept; it is just expectation w.r.t. the conditional; distribution. However
E(X Y ) is a new concept, we are thinkling of this as a function on the sample
space. Unless you are careful, this will cause confusion.

pgf:
Let X be a non-negative integer valued random variable, say takes the value
k with probability pk for k = 0, 1, 2 . . ..

Definition: The probability generating function (pgf) is defined by

ϕX(s) = p0 + p1s+ p2s
2 + · · · =

∑
pns

n 0 ≤ s ≤ 1.

This is an infinite degree polynomial or power series. Note it converges for
at least −1 ≤ s ≤ 1. Of course if the random variable takes only finitely
many values, then this is a polynomial and defined for all s.
This is a way of remembering the sequence of probabilities. you can see that

pn = ϕ(n)(0)/n!

Thus the function ϕ generates the probabilities.

X ∼ B(n, p); ϕX(s) = (q + ps)n

X ∼ P (λ); ϕ(s) = e−λ(1−s)
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X ∼ G(p); ϕ(s) = 1/(1− qs)

Since
(p0 + p1s+ p2s

2 + · · · )(a0 + a1s+ a2s
2 + · · · ) =

p0a0 + (p0a1 + p1a0)s + (p0a2 + p1a1 + p2a0)s2 + · · ·

we see that if X, Y are independent (non-negative integer valued) then

ϕX+Y = ϕX ϕY

This is one way of computing the distribution of sum of independent random
variables. You can identify the distribution of X + Y by looking at ϕXϕY .

Here is an example from Manjunath Krishnapur and Persi Diaconis

X\Y 0 1 2 total

0 1/9 1/9 1/9 3/9

1 1/9 1/9 1/9 3/9

2 1/9 1/9 1/9 3/9

total 3/9 3/9 3/9 1

Fix any ε, 0 < ε < 1/9,

X∗\Y ∗ 0 1 2 total

0 1/9 1/9− ε 1/9 + ε 3/9

1 1/9 + ε 1/9 1/9− ε 3/9

2 1/9− ε 1/9 + ε 1/9 3/9

total 3/9 3/9 3/9 1

Then X, X∗, Y , Y ∗ all have the same distribution; uniform on {0, 1, 2}.
X, Y are independent. But X∗, Y ∗ are not independent. However X+Y and
X∗ + Y ∗ have same distribution. Thus ϕX∗ ϕY ∗ = ϕX∗+Y ∗ but X∗, Y ∗ are
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not independent. You can even take ε = 1/9.

X∗\Y ∗ 0 1 2 total

0 1/9 0 2/9 3/9

1 2/9 1/9 0 3/9

2 0 2/9 1/9 3/9

total 3/9 3/9 3/9 1

mgf:
Let now X be any random variable not necessarily integer valued. Say, takes
values xi, i ≥ 1 with respective probabilities pi, i ≥ 1. We have defined
E(X) =

∑
xipi. and E(X2) =

∑
x2
i pi. These are called the first and second

moments, µ1 and µ2 . These were, to some extent, give a feeling for the
distribution – mean and spread. We can define n-th moment.

µn = E(Xn) =
∑

xni pi provided
∑
|xni |pi <∞

This is called n-th moment. We put µ0 = 1.
The moment generating function, mgf, of a random variable X is the

function defined by

MX(t) = E(etX) defined for t ∈ {E(etX) <∞}

Unlike the pgf which is defined for at least−1 ≤ s ≤ 1, it may so happen that
M is defined only for t = 0, even if X is integer valued. Note that M(0) = 1
always. Thus if X takes values {xi} with corresponding probabilities {pi}
then

M(t) =
∑

etxipi.

For example,
X ∼ B(n, p); M(t) = (q + pet)n

X ∼ P (λ); M(t) = e−λ(1−et)

X ∼ G(p); M(t) = 1/(1− qet) if qet < 1

When X and Y are independent then so are etX and etY . Since et(X+Y ) =
etXetY we see

X, Y independent : MX+Y = MXMY t ∈ Dom(MX) ∩Dom(MY )
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where Dom is domain of the function.
mgf does actually generate the moments. Suppose a random variable has
mgf defined for t in an interval (−a,+a). Then we can show

µn = M (n)(0)

where M (n) denotes the n-th derivative. One can show that under the as-
sumed hypothesis, the function M is differentiable any number of times and
the above equality holds.
If X has mgf MX(t), then Y = aX has MY (t) = MX(at) These functions
play fundamental role in certain contexts. However our purpose is not to
discuss these in detail. My main purpose is to prove a beautiful result.

Chernoff bound:

Theorem (Chernoff bound): Let X be a random variable and a > 0.
Then for any t > 0 such that MX(t) is finite, we have

P (X ≥ a) ≤MX(t) e−ta

Proof is simple, the events (X ≥ a) and (etX ≥ eta) are same because t > 0
and exponential function is increasing. Now Chebyshev does it.

But then why is it so important. You have a handle t with you and you
can make best use of it. Here is an illustration.

Let us consider X1, X2, . . . , Xn independent and each assuming values
±1 with equal probability. Thus mean is zero. Also variance is one. Let
Sn =

∑
Xi. Thus Sn has variance n, Thus variance of Sn/n is 1/n. Usual

Chebyshev gives, for any a > 0

P (|Sn
n
| ≥ a) ≤ 1

na2
(♣)

Let us see how our handle helps us. Let Y = Sn/n. Then

MY (t) = MSn(t/n) MSn(t) = [MX1(t)]
n

the last equality is by independence.

MX1(t) =
(et + e−t)

2
= 1 +

t2

2!
+
t4

4!
+ · · ·+ t2n

(2n)!
+ · · ·

Since
(2n)! ≥ 2× 4× 6× · · · × 2n = 2n n!
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we get

MX1(t) ≤ 1 +
t2/2

1!
+

(t2/2)2

2!
+

(t2/2)3

3!
+ · · ·+ (t2/2)n

n!
+ · · ·

= et
2/2

Thus
MSn(t) ≤ ent

2/2 MY (t) ≤ et
2/2n

Chernoff gives

P (
Sn
n
≥ a) ≤ e−ta et

2/2n

We choose t = na so that ta = na2 and (t2/2n) = na2/2 giving

P (
Sn
n
≥ a) ≤ e−na

2/2

Since −Sn and Sn have same distribution we get

P (
Sn
n
≤ −a) ≤ e−na

2/2

Thus

P (|Sn
n
| ≥ a) ≤ 2e−na

2/2 (♠)

This is an exponential bound compared to (♣). This precision is very impor-
tant especially when you simulate you need to know after how many steps
you should stop. This has other uses too.

Chernoff bound along with the following (we met earlier) belong to the
standard tool kit.

First moment method: P (|X| ≥ a) ≤ E(|X|)/a for a > 0.

Second moment method: P (|X| ≥ a) ≤ E(X2)/a2 for a > 0.

Union bound: P (∪Ai) ≤
∑
P (Ai), for events {Ai}
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BVR Probability 2023 week 6/8

Experiments with toooo many outcomes:

We have been discussing experiments/rvs that take countably many val-
ues, usually called discrete rvs. We shall now discuss experiments that have
toooooo many outcomes and rvs that take toooooo many values.

For example, when you want to model life time of this bulb, any number
0 < x <∞ is a possible value. The same when you want to model the time
between two disintegrations of a radio active material. That is, imagine a
radio active material placed near a Geiger counter. As soon as a particle is
emitted, the counter beeps. Consider the time between two beeps. It is not
fixed. This can be anything in (0,∞).

an experiment:
to make life simple, let us consider the following experiment: pick a point

at random from the interval (0, 1]. How should we build a model for this
experiment.
First step is this: we should understand as to what happens when you do
the experiment – understand the set of outcomes. Obviously any number in
this interval is a possible outcome. Thus the sample space is

Ω = {x : 0 < x ≤ 1} = (0, 1].

How should we go about assigning probabilities?
imitation being the first choice here is the first try. Associate probability
for each outcome and then define probabilities of events as sum of probabil-
ities of outcomes in that event. But there are two problems. Firstly, event
could now contain an uncountable number of outcomes, how are you going
to define uncountable sums? (well, can be done; but in our context useless;
let us not bother).

Secondly, what could be probability for an outcome? The picking is ran-
dom, so every outcome must have same probability; no bias! but if chance of
every outcome is, say 1/1010, then taking a subset with 1010+1 outcomes you
will get an event with probability larger than one. But chances of anything
should be between zero and one. This argument shows that chance of an
outcome can not be any strictly positive number; it has to be zero.
Thus the imitation fails. We have to reconcile to the fact that there are too
many outcomes and chance of every single outcome must be zero. so what
do we do? Take a clue from the physicists. If you take this piece of paper;
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they talk about mass density. mass at each single point is zero; but it is
distributed across; we do not take mass of a region of the paper to be sum
of masses of points. We assign masses to regions at one stroke.

Thus here is second try. Associate for every event A; that is, every
subset of (0, 1] a number P (A) to ‘represent’ the chances that the selected
number falls in A. What do we expect such an association to satisfy?

(i) P (Ω) = 1 and P (∅) = 1 and 0 ≤ P (A) ≤ 1.
(ii) If A1, A2, · · · is a sequence of disjoint events then P (∪An) =

∑
P (An).

(iii) P ( i
2k
, i+1

2k
] = 1

2k
; 0 ≤ i < 2k; k ≥ 1.

The first condition is our belief that chances of anything should be non-
negative. Chance of something or other happening should be one; chance of
nothing happening should be zero.
Second condition is just what we used in the discrete setup and we should
not forego that. The chances that a Poisson variable X takes an even integer
value is obtained by summing P (X = n) for n = 0, 2, 4, 6, · · · .
The third conditions just reflects the fact that we are selecting point X at
random. For example chances that (X ∈ (0, 1/2]) should be same as the
chances that (X ∈ (1/2, 1]). Hence each must have probability 1/2. Simi-
larly the events (X ∈ (0, 1/4]) and (X ∈ (1/4, 1/2]) should have the same
probability and hence each must be 1/4. And so on.

Is there an assignment A 7→ P (A) for all subsets of Ω which satisfies the
three conditions above. Unfortunately answer to this question is not straight
forward. [Under two assumptions — namely, Axiom of Choice and Contin-
uum Hypothesis — the answer is in the negative. You need not understand
these]. Our attempt fails.

Where did we go wrong? After all, any demand that is reasonable should
be satisfiable. All the three demands listed are reasonable. the unreason-
ableness lies at an unexpected place. We wanted assignment of probability
for every subset of Ω. Is it necessary? What is the purpose of doing prob-
ability? To answer questions regarding chances of certain things happening.
In other words, calculate probabilities of events that we come across. Should
we unnecessarily burden ourselves with assigning probabilities for sets that
we never come across?

In other words; not every set should be an event. Events are just those
subsets in which we will be interested; not every subset of Ω.
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So what subsets of Ω should be called events? Intervals occur in practice,
they are the simplest sets and they should be called events. For example, we
will be interested in the simple question P (0.258 < X < 0.349).

If we are interested in some thing happening, then we will also be inter-
ested in the chances of that not happening. Thus if A is an event then its
complement Ac should also be an event.

If we are interested in: What are the chances that (X ∈ A1)?; what are
the chances that (X ∈ A2)?; etc then we will be interested in: what are the
chances that X is in ‘one of those sets’. In other words if each An is an event
then their union ∪An should be an event. Since this is what we were using
in experiments with countably many outcomes, we require this here. More
over condition (ii) for probability already suggests that if each An is an event
then ∪An must be an event. Of course we do not demand that uncountable
union of events be an event.

It is unnecessary for you to remember these conditions. You just remem-
ber that the collection of events is a bag B of subsets of Ω satisfying some
reasonable conditions.

So here is a third try for modelling the experiment of picking a point at
random from (0, 1].

Is there a bag B of subsets of Ω = (0, 1] satisfying ‘reasonable’ conditions
and for each set A in the bag a number P (A) satisfying conditions (i,ii,iii)
above.
Finally success: Yes, there is such a B and P .
Of course, you can continue this discussion: how many such things are there;
if there are many; which one should we take as model etc. But we stop
this discussion here by just noting that there is only one such ‘with proper
formulation’ and so there is no confusion.

In passing let me assure you that such a bag contains all subsets you can
think of. In other words, whatever be such a bag, it is hard to think of sets
which are NOT in the bag! This does not mean most of the subsets of Ω are
in such a bag; far from it. There are many many more sets which are not in
the bag than sets which are in the bag. However all subsets you can think
of are here. Thus for all practical purposes, assigning probability for sets in
such a bag of is enough for answering all questions of practical importance.

Probability models:
Thus the upshot of all this is the following: No need to allow every subset
of sample space as an event. make up your mind as to which sets you would
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like to be events and then assign probability. Here is the precise definition:

We define a probability model or a probability space to consist of a triple
(Ω,B, P ).

(•) Ω is a non-empty set.
Ideally it is the set of outcomes of your experiment.
(••) B is a bag of subsets of Ω such that (a) empty set and Ω are in the bag;

(b) if a set is in the bag then so is its complement; and finally (c) if you take a
sequence of sets in the bag then their union is also in the bag.

Ideally sets in the bag are events in which you will be interested. Sets not in
the bag are NOT events.

(• • •) P is a map that associates with every A in the bag a number P (A)
in such a way that (i) P (∅) = 1 and P (Ω) = 1 and 0 ≤ P (A) ≤ 1; (ii) for a
sequence (An : n ≥ 1) of disjoint sets in the bag P (∪An) =

∑
P (An).

Ideally P (A) denotes the probability of ending up with an outcome in A when
you perform the experiment.

As usual a random variable is a measurement — associates with every
outcome a real number. In other words it is a real valued function X de-
fined on Ω. Remember we should be able to answer questions concerning
our measurement. if some one asks what are the chances that value of the
measurement is at most 29; we should be able to answer. How do we pro-
pose to answer? The obvious way, collect all outcomes for which the required
condition holds, that is; A = {ω : X(ω) ≤ 29}. Then P (A) is the required
answer.
There is one catch, how do we know that the above set A is in the bag? If it
were not, then P (A) is meaningless. Thus we could answer questions about
our measurement only when such sets are in the bag. With this in mind we
make the following definition.

A random variable X is a real valued function on Ω such that for every real
number a, the set {ω : X(ω) ≤ a} is an event. That is, this set is in the bag B.

Of course, you might still wonder if answering such simple questions is
good enough. We might be interested in more complicated questions con-
cerning our random variable, would it be possible to answer them with the
above definition? Yes, we can answer any question you can think of, if only
you can answer the simple questions described above.

You probably would now think life is getting complicated because we
talked about bag of sets etc. But you must keep in mind the following.
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(i) There is just one simple difference between experiments with countably
many outcomes and experiments with uncountably many outcomes: not ev-
ery subset of outcomes is an event. The discrete experiments are also covered
with this formulation because you can always take the bag of events to be
the collection of all subsets of the sample space. (ii) All the above discussion
is lie foundation of building whichj we need not worry about. We only use
the rooms and pathways in the buildind but not the foundation. [Remember:
If good foundation does not exist, the building collapses].

Density:
How do we hope to answer questions concerning random variables? In the
discrete case we defined distribution of the random variable. This is table:
value of the random variable along with probability of taking that value. We
used this to answer all questions regarding the variable, we need not look at
the sample space.

In the present case there is a function which answers questions about the
random variable. This function is like a lawyer for the random variable.

We say that a function f on the real line is a density function if it takes non-

negative values and
∞∫
−∞

f(x)dx = 1. we say that a random variable X obeys a

density function f if for any number a; P (X ≤ a) =
a∫
−∞

f(x)dx.

This is enough to answer all questions (we can think of) about the random
variable. For example if a < b;

P (a < X ≤ b) =

∫ b

a

f(x)dx.

This is because

P (X ≤ a) + P (a < X ≤ b) = P (X ≤ b)

Similarly if you take disjoint union of a sequence of intervals and ask for
the chances of X being in one of these intervals, you can use additivity and
answer. Thus answers regarding probabilities of events described using the
rv can be obtained by looking at the area under the curve above appropriate
interval (or union of intervals). This is just similar to discrete case where we
used sums of mass function over appropriate sets. Think.
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Incidentally, the densities we consider, in our course, are piecewise con-
tinuous and the integrals above are to be interpreted as Riemann integrals
– as learnt in your calculus course. But, in practice one allows a more gen-
eral concept of integration; we shall not. we use only Riemann integral.
Relax.

Sometimes density function is also called probability density function.
Any way we are doing probability and we do not need this adjective.

We shall handle questions regarding random variable via its density func-
tion, not going to the sample space Ω and the bag of sets B. Relax.

The doubt arises: Then why did you tell us all this story, bag of sets and
nonsense. If we did not go over it, you would not know what are the problems
associated with modelling; what exactly is a model and what exactly is to
be done to get a model; you can not even define a random variable. You are
left with the impression that random variable is something hanging in the
air; it is a fuzzy object; it is random etc. it is neither random nor variable;
it is as concrete as you and me. It is a function defined on Ω – measurement
associated to each outcome.

[There are historical reasons for using the word ‘random variable’. The
word ‘random’ draws your attention to the fact that this is not any function
on an arbitrary set; there is a probability floating in the background. The
word ‘variable’ suggests that you can use it as variable and talk, for example
about sinX and eX etc — like functions of real variable etc.]

Of course, it is a different matter that we finally decided to use density
function to answer questions about the random variable. This only reflects
the fact that we are not mature enough to handle probability spaces.

Just as there are several rvs; binomial, Poisson, geometric, etc in the dis-
crete case here too there are several that raise in practice and we start with
some of them to get concrete examples of rvs. You must sketch all these
curves and see them explicitly.

unif(0, 1):
Consider the function f(x) = 1 for 0 < x < 1 and f(x) = 0 for x 6∈ (0, 1).
You can see that the area under the curve is one.
This is called uniform (0, 1) density and a random variable that obeys this
density is called a uniform(0, 1) random variable.

It is easy to see that if X is such a random variable then the following is
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true: for any interval (a, b) ⊂ (0, 1) we have P (X ∈ (a, b)) = b− a. further,
P (X ∈ (0, 1)c) = 0.

In other words this random variable is precisely a point picked at random
from (0, 1).

More generally, fix any interval (α, β) where −∞ < α < β < ∞. Let f
be the function defined as

f(x) =
1

β − α
, x ∈ (α, β); f(x) = 0, x 6∈ (α, β)

This is a density function named unif(α, β) density and a random variable
having this density is called unif(α, β) random variable. This models a
point selected at random from this interval.

Exp(λ):
Consider the following function: f(x) = e−x for x > 0 and f(x) = 0 for

x ≤ 0.
you can see area under the curve is one. This density function is called

exponential density, more precisely exp(1) density function and a random
variable having this density is called exponential random variable, more
precisely, exponential rv with parameter 1; exp(1) random variable.

If X is such a random variable then P (X ≤ 0) = 0 where as for any
0 ≤ a < b, we have

P (a < X < b) = e−a − e−b.
More generally fix λ > 0. Consider

f(x) = λe−λx, x > 0; f(x) = 0, x ≤ 0.

This is called exp(λ) density and a random variable having this density is
called exp(λ) random variable. Here λ > 0 is a parameter and so this is
called exponential variable with parameter λ. Remember we had binomial
with parameter p, Poisson with parameter λ etc.

This density is useful in modelling life time of electric bulbs. This is also
a good model for inter-disintegration time for radio active material. This is
also good model for inter arrival times of customers at a service station.

Gamma density:
Fix a > 0. Let

ϕ(x) = e−xxa−1 x > 0; ϕ(x) = 0; for x ≤ 0
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Then we claim that
∞∫
−∞

ϕ(x)dx is finite.

First we claim that
∫∞

1
ϕ(x)dx is finite. Indeed if 0 < a < 1 then

e−xxa−1 ≤ e−x x > 1

since the area under the function on the right side is finite, it is so for the
left side function as well. In case a ≥ 1, fix an integer k such that a < k+ 1.
Now you use the fact that

e−xxa−1 ≤ e−xxk x > 1

As above area under right side curve is finite etc.

Now we shall argue
∫ 1

0
ϕ(x)dx is finite. if a ≥ 1 then integrand is a

continuous function on [0, 1] and is hence integrable. Let now 0 < a < 1.
Then

e−xxa−1 ≤ xa−1 0 < x < 1

As earlier comparison takes over.

Since both
1∫
0

ϕ(x)dx and
∫∞

1
ϕ(x)dx are finite we conclude that

∞∫
0

ϕ(x)dx

is finite. We denote ∫ ∞
0

ϕ(x)dx = Γ(a).

f(x) =
1

Γ(a)
ϕ(x) is a density function. This is called Gamma density,

more precisely gamma density with parameter (a). A random variable which
obeys this density is called a gamma random variable.

It is instructive to sketch the curves f(x) for a = 1/2; for a = 1; for
a = 2.
Integration by parts immediately gives that Γ(a + 1) = aΓ(a); a > 0.
This will immediately gives Γ(n) = (n− 1)!; n ≥ 1.

Beta density:
Fix a > 0, b > 0. Let

ϕ(x) = xa−1(1− x)b−1 0 < x < 1; ϕ(x) = 0; if x 6∈ (0, 1).
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We claim that
∞∫
−∞

ϕ(x)dx is finite. Of course the integrand being zero outside

unit interval this amounts to showing
1∫
0

ϕ(x)dx is finite.

We first show that
1/2∫
0

ϕ(x)dx is finite. This is immediate if you observe

that (1−x)b−1 is a bounded continuous function on this interval and a being
strictly positive, xa−1 is integrable.

We now show that
1∫

1/2

ϕ(x)dx is finite. This is immediate if you observe

that xa−1 is a bounded continuous function on this interval and b being
strictly positive, (1− x)b−1 is integrable.

Since both
1/2∫
0

ϕ(x)dx and
1∫

1/2

ϕ(x)dx are finite we conclude that
1∫
0

ϕ(x)dx

is finite. We denote
1∫

0

ϕ(x)dx = β(a, b).

Thus

f(x) =
1

β(a, b)
ϕ(x)

is a density. This is called beta density. More precisely it is called beta
density with parameters a and b. A random variable obeying this density is
called beta random variable.

It is instructive to sketch these curves for a = 1/2, b = 1/2; for a = 1, b =
1; for a = 2; b = 1/2; for a = 1/2, b = 2; for a = 2, b = 3.

The gamma and beta functions arise in several contexts, not only prob-
ability but also in Physics, number theory, differential equations, special
functions and so on. So does the normal density that we discuss next.

Double exponential:

f(x) =
1

2
e−|x| −∞ < x <∞

Then
∫
f = 1. This is called double exponential or Laplace density. A rv

having this density is called a double exponential rv.
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Normal:
There are several densities that arise in practice. But we discuss only one

more. Let
f(x) = e−x

2/2; −∞ < x <∞.

Then
∫
f(x)dx < ∞. Indeed on [−1, 1] this is bounded continuous and

hence integrable. On (−∞, 1) and (1,∞) we have f(x) ≤ e−|x| and hence
integrable. We later show that

∫
f = 1/

√
2π. Thus

ϕ(x) =
1√
2π
e−

1
2
x2 −∞ < x <∞.

is a density. This is called standard normal density and a random vari-
able obeying this density is called a standard normal variable.

Normal integral:
You can use double integrals to show, in a painless way,∫ ∞

−∞

1√
2π
e−x

2/2dx = 1.

You need to use polar coordinates, change variables x = r cos θ and y = r sin θ
and use Jacobian formula.

Since we are not sure of these techniques, we shall follow elementary high
school methods to derive the same result. Integrand being symmetric, we
only need to show ∫ ∞

0

e−x
2/2dx =

√
π/2

Denote

an =

∫ ∞
0

xne−x
2/2dx; n = 0, 1, 2, · · ·

a0 =?; a1 = 1.

Integration by parts gives ak = (k − 1)ak−2 for k > 1 leading to

a2n = (2n− 1)(2n− 3) · · · (3)(1)a0 =
(2n)!

n! 2n
a0

a2n+1 = (2n)(2n− 2) · · · (2)1 = n! 2n

Fix k ≥ 1. Note that for any λ ∈ R we have∫ ∞
0

xk−1 (λx− 1)2 e−x
2/2dx > 0
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because integrand is non-negative, continuous and is not the zero function.
Thus

λ2ak+1 − 2λak + ak−1 > 0; ∀λ ∈ R

hence
a2
k ≤ ak+1ak−1; or ak ≤

√
ak+1ak−1

Now a2n ≤
√
a2n+1a2n−1 gives you

(2n)!

n! 2n
a0 ≤

√
n! (n− 1)!2n 2n−1 = n! 2n

1√
2n

Or

a0 ≤
n! n! 2n 2n

(2n)!
√

2n

This being true for all n, we get

a0 ≤ lim
n

n! n! 2n 2n

(2n)!
√

2n
(♠)

Now use a2n+1 ≤
√
a2n+2an to see

n! 2n ≤

√
(2n)!

n! 2n
a0

(2n+ 2)!

(n+ 1)! 2n+1
a0 = a0

(2n)!

n! 2n

√
(2n+ 1)

Or

a0 ≥
n! n! 2n 2n

(2n)!

1√
2n+ 1

This being true for every n, we get

a0 ≥ lim
n

n! n! 2n 2n

(2n)!

1√
2n+ 1

(♣)

Of course, in both (♠) and (♣) we assumed that the limits on the right
exist. the limits are same because (2n) or (2n+ 1) makes little difference (to
whom?).

We shall now show that those limits exist and equal
√
π/2 as required.

Walli’s product:
We start with∫ π/2

0

(sinx)0dx =
π

2
;

∫ π/2

0

(sinx)1dx = cos 0− cos(π/2) = 1.
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If m > 1, ∫ π/2

0

(sinx)mdx =

∫ π/2

0

(sinx)m−1(− cosx)′dx

integration by parts

=

∫ π/2

0

cosx (m− 1) sinm−2 x cosxdx

= (m− 1)

∫ π/2

0

sinm−2 xdx− (m− 1)

∫ π/2

0

sinm xdx

so that ∫ π/2

0

sinm xdx =
m− 1

m

∫ π/2

0

sinm−2 xdx.

Thus ∫ π/2

0

sin2m xdx =
2m− 1

2m

2m− 3

2m− 2

2m− 5

2m− 4
· · · 3

4

1

2

π

2
.

∫ π/2

0

sin2m+1 xdx =
2m

2m+ 1

2m− 2

2m− 1

2m− 4

2m− 3
· · · 4

5

2

3
1.

So (check you are not dividing by zero)∫ π/2
0

sin2m xdx∫ π/2
0

sin2m+1 xdx
=

(2m− 1)(2m+ 1)

(2m)2

(2m− 3)(2m− 1)

(2m− 2)2
· · ·

· · · 3× 5

42

1× 3

22

π

2
.

π

2
=

22

1 · 3
42

3 · 5
62

5 · 7
· · · (2m− 2)2

(2m− 3)(2m− 1)

(2m)2

(2m− 1)(2m+ 1)

×
∫ π/2

0
sin2m xdx∫ π/2

0
sin2m+1 xdx

.

We shall now show that as m→∞;∫ π/2
0

sin2m xdx∫ π/2
0

sin2m+1 xdx
→ 1. (•)

It will then follow that

π

2
= lim

m→∞

22

1 · 3
42

3 · 5
62

5 · 7
· · · (2m− 2)2

(2m− 3)(2m− 1)

(2m)2

(2m− 1)(2m+ 1)
.
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This is called Walli’s product.

π

2
= lim

m→∞

22m(m!)2

32 · 52 · · · (2m− 1)2(2m+ 1)
= lim

m→∞

24m(m!)4

[(2m)!]2(2m+ 1)
.

Or √
π

2
= lim

m→∞

22m(m!)2

(2m)!
√

(2m+ 1)

Or
√
π = lim

m→∞

22m(m!)2

(2m)!
√

(m+ 1/2)

Since
√
m/
√
m+ 1/2→ 1. we can also write the above neatly as

√
π = lim

m→∞

22m(m!)2

(2m)!
√
m

This is called Walli’s formula for
√
π.

Let us now prove (•).
Observe that for 0 ≤ x ≤ π/2, we have 0 ≤ sinx ≤ 1; so that

sin2m+1 x ≤ sin2m x ≤ sin2m−1 x

Hence ∫ π/2

0

sin2m+1 xdx ≤
∫ π/2

0

sin2m xdx ≤
∫ π/2

0

sin2m−1 xdx

All quantities being positive,

1 ≤
∫ π/2

0
sin2m xdx∫ π/2

0
sin2m+1 xdx

≤
∫ π/2

0
sin2m−1 xdx∫ π/2

0
sin2m+1 xdx

Using the recurrence relation obtained at the beginning, the above is same
as saying

1 ≤
∫ π/2

0
sin2m xdx∫ π/2

0
sin2m+1 xdx

≤ 2m

2m− 1

proving (•).

Stirling formula for n!:
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There is another useful mathematical formula, better to discuss while we
are visiting Walli.

it says that n! is like
√

2πe−nnn+1/2.
This is to be interpreted in the following sense. Their ratio converges to one.
When we say that a sequence (an) is like another sequence (bn) (both are
sequences of strictly positive numbers) there are two ways of understanding.
Let us assume that our sequences are increasing to infinity.

Either (an − bn)→ 0 or (an/bn)→ 1.

Of course when the first happens, then the second also happens. However
the other way is not in general true. [it is important that our sequences are
diverging to infinity. Otherwise, you can take an = 1/n2 and bn = 1/n3.
Since both converge to zero you see an − bn → 0 as well. However an/bn
equals n.]

For example (n) is like (n+ 1/n) in the first sense and hence also in the
second sense. the sequence (n2) is like (n2 + n) in the second sense, but not
so in the first sense. In fact their difference is n which becomes larger and
larger. But then in what sense are they like each other? well, Both numbers
are becoming large, when you replace one by the other, the relative error
(relative to the quantity you are measuring) is small.

If you are measuring length of this room, if you are off by hundred meters
then the error is indeed very huge. On the other hand if you are measuring
distance (of earth) to sun, if you are off by a mile or even hundred miles, the
error is very very small. So the absolute error is many times unimportant
and it is the relative error that matters. Think.

Returning to our problem, we need to show

n!√
2πe−nnn+(1/2)

→ 1 or
n!

e−nnn+(1/2)
→
√

2π

This is achieved in two steps: first show limit exists and non-zero. Next show
(using a test case) that it must the right side.

You see we have expression like e−nnn. To understand it, take logarithm,
then this becomes: n log n− n. This should remind you x log x− x which is
integral of log x. The proof of Stirling in just a clever approximation of the
area under the curve f(x) = log x from x = 1 to x = n.
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The function log x is a concave function so that any chord is below the
curve and any tangent is above the curve. Thus, for k ≥ 1,

the area under the curve y = log x from k to k + 1 is in between
the area under the chord joining (k, log k), (k + 1, log(k + 1)) and
area under the tangent at x+ (1/2) above (k, k + 1).
Draw graphs and see. Thus

1

2
log(k + 1) +

1

2
log k ≤

∫ k+1

k

log x dx ≤ log(k + 1/2).

Adding these for k = 1, 2, · · · , n − 1 and remembering that x log x − x is a
primitive for log x we get

log(n!)− 1

2
log n ≤ n log n− n+ 1 ≤

n−1∑
1

log(k + 1/2).

Let

an = n log n− n+ 1− [log(n!)− 1

2
log n] = log

{
e−nnn+1/2

n!

}
+ 1.

Then an is the area between the curve y = log x and the ‘chords’ explained
above, from x = 1 to x = n Thus we see

an ≥ 0; an ↑ . (♠)

Also

an ≤
n−1∑

1

{log(k + 1/2)− 1

2
log(k + 1)− 1

2
log k}.

=
1

2

n−1∑
1

{
log

(k + 1/2)

k
− log

(k + 1)

k + 1/2

}

≤ 1

2

n−1∑
1

{
log(1 +

1

2k
)− log(1 +

1

2(k + 1/2)
)

}

≤ 1

2

n−1∑
1

{
log(1 +

1

2k
)− log(1 +

1

2(k + 1)
)

}
=

1

2
log

3

2
− 1

2
log(1 +

1

2n
) ≤ 1

2
log

3

2
.
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As a consequence an is bounded above . So (♠) implies that an converges to
a finite limit. Say an ↑ c

log

{
e−nnn+1/2

n!

}
= an − 1 ↑ c− 1.

Or
e−nnn+1/2

n!
→ ec−1.

Or
n!

e−nnn+1/2
→ e1−c = k say k 6= 0.

Or
n!

ke−nnn+1/2
→ 1.

We shall now evaluate the constant k by using the above limit in a known
case, namely, Walli’s product. We know

22n(n!)2

(2n)!
√
n
→
√
π.

Suppose that we have strictly positive numbers an and bn and an/bn → 1. If
αn × an → c then αn × bn → c. This is because

αn × bn = αn × an ×
bn
an
→ c× 1.

Similarly if αn/an → c then αn/bn → c. In other words we can replace an by
bn. As a consequence the above result of Walli implies

22nk2e−2nn2n+1

ke−2n(2n)2n+1/2
√
n
→
√
π.

That is,
k =
√

2π.

Thus
n!√

2πe−nnn+1/2
→ 1.

This completes proof of Stirling.

Here is proof about chord and tangent.
Let us first make a few observations which depend on the fact that f ′′ =

−1/x2 ≤ 0.
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Let g be a twice differentiable function on an interval (a, b) with g′′ ≤ 0.
Consider any two points u < v in the interval (a, b). We claim that the

chord (or secant) joining the two points (u, f(u)) and (v, f(v)) lies below the
graph of f . There are several ways of seeing this. Here is one way.

First observe that the equation of the chord is

y = f(u) +
f(v)− f(u)

v − u
(x− u).

Consider any point w ∈ [u, v]. We need to show

f(u) +
f(v)− f(u)

v − u
(w − u) ≤ f(w).

That is,

f(u)− f(w) +
f(v)− f(u)

v − u
(w − u) ≤ 0.

Or
[f(u)− f(w)](v − u) + [f(v)− f(u)](w − u) ≤ 0.

[f(u)− f(w)](v − u) + [f(v)− f(w) + f(w)− f(u)](w − u) ≤ 0.

[f(v)− f(w)](w − u)− [f(w)− f(u)](v − w) ≤ 0.

By MVT, there are points θ ∈ (u,w) and η ∈ (w, v) such that f(w)−f(u) =
f ′(θ)(w − u) and f(v)− f(w) = f ′(η)(v − w). So we need to show

f ′(η)(v − w)(w − u)− f ′(θ)(v − w)(w − u) ≤ 0.

That is,
[f ′(η)− f ′(θ)](v − w)(w − u) ≤ 0.

First factor above is f ′′(ζ)(η − θ) for some ζ. Now f ′′ ≤ 0 and θ < η tell
you that the first factor above is negative. Since u < w < v, the other two
factors are positive and hence the inequality is true.

Consider any point u in the interval (a, b). We claim that the tangent (to
the graph of f) at u lies above the graph.

The equation of the tangent is

y = f(u) + f ′(u)(x− u).

Let us take any other point w ∈ (a, b). We need to show

f(w) ≤ f(u) + f ′(u)(w − u). (♣)
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u < w. Need to show
f(w)− f(u)

w − u
≤ f ′(u).

But the left side is f ′(θ) for some u < θ < w and since f ′ is decreasing
(remember f ′′ ≤ 0), (♣) is verified.

w < u. Need to show

f(w) ≤ f(u)− f ′(u)(u− w) i.e f ′(u)(u− w) ≤ f(u)− f(w)

f ′(u) ≤ f(u)− f(w)

u− w
The left side is f ′ at some point below u, decreasing nature of f ′ now shows
the above inequality and verifies (♣).
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BVR Probability 2023 week 9

Digression: Area
There is one subtle point. I have been using arguments like: 0 ≤ f ≤ g, area
under g is finite and so area under f is also finite. Of course, if you draw
curves you see it is immediate; simply because you daw curves that you can.
Consider the function g(x) = 1 for x ∈ (0, 1) and g(x) = 0 for x 6∈ (0, 1).
Consider f(x) = 1 only for irrational numbers x in (0, 1); and f(x) = 0 for
all other points. Thus f(x) = 0 for all rational numbers in (0, 1) and also
for every number outside of (0, 1). Clearly 0 ≤ f ≤ g; area under g is finite.
Do you think area under f is finite? Definitely not, because area under f
does not make sense — f is not Riemann integrable. We decided to use only
Riemann integral.

Is our earlier argument incorrect? No, it is correct, we used piece-wise
continuous functions. A function f on R is piecewise continuous if R can be
divided into finitely many disjoint intervals such that f is continuous on each
interval except possibly at the end points. If g ≥ 0 is Riemann integrable
and if 0 ≤ f ≤ g and f is piecewise continuous, then f is Riemann integrable
and

∫
f ≤

∫
g.

Digression: densities
We said that f is density for a random variable X if the following holds:

P (a < X < b) =
b∫
a

f(x)dx for every −∞ < a < b < ∞. For example

Unif(0, 1) random variable X, has the density f(x) = 1 for 0 < x < 1 and
f(x) = 0 for x 6∈ (0, 1). Let us consider g(x) = 1 for 0 ≤ x ≤ 1 and g(x) = 0
for x 6∈ [0, 1]. Clearly this is different from f . However If you recall properties

of Riemann integral, then you notice the following:
b∫
a

g(x)dx =
b∫
a

f(x)dx for

every a < b. In other words we could have said g is also a density for X.
Similarly if X is a standard normal variable, then we have its density to

be

ϕ(x) =
1√
2π
e−x

2/2 −∞ < x <∞.

Suppose we define

ψ(x) =
1√
2π
e−x

2/2 −∞ < x <∞, x 6= 0; g(0) = 200.

Then you can see that
b∫
a

ϕ(x)dx =
b∫
a

ψ(x)dx for every a < b. Thus you can
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regard ψ also as density for the standard normal. We shall not do so because
if there is a continuous density, then we can show it is unique. In such a case
we take the continuous function as the density. Thus for standard normal,
ϕ is the density.

In the first example of uniform(0, 1) it is unclear what to take, both f
and g are piecewise continuous. Actually you can also consider h(x) = 1 for
[0 < x < 1 and x 6= 1/2, 1/3, 1/4, · · · ] and h(x) = 0 for all other values.
You can show that h is not piecewise continuous; h is Riemann integrable;

and
b∫
a

h(x)dx =
b∫
a

f(x)dx and thus h is also a density for the uniform (0, 1)

random variable. However we take piecewise continuous function as density
if there is one. Of course, as mentioned above either f or g ca be taken as
density in this case. But as you see, the only difference between them is
only at the finitely many end points of appropriate intervals. But you need
not worry about this because you can choose any one of them and do your
calculations. Your end result of the calcularton does not depend on what
you take.
Remember, in our course, we consider only piecewise continuous
densities. Thus we have a partition −∞ = a0 < a1 < · · · < ak = ∞ such
that in each interval (ai, ai+1) the density is continuous. The only vagueness
is at the end points of these intervals: ai for 0 < i < k. There you choose
what is convenient.

Expectation, variance:

We can imitate everything we did with discrete variables.

definition: Suppose X has density f . Then the expected value/mean/average
of X is

E(X) =

∫
xf(x)dx if

∫
|x|f(x)dx <∞

More generally,The n-th moment of X is

µn = E(Xn) =

∫
xnf(x)dx if

∫
|x|nf(x)dx <∞.

Also Variance is defined as var(X) = E(X2)− [E(X)]2.
Thus instead of multiplying value and probability and adding (

∑
xipi)

we are multiplying value and density (xf(x)) and integrating. Earlier inter-
pretations of mean and variance remain valid. Moreover as earlier,

var(X) =

∫
(x− µ)2f(x)dx =

∫
x2f(x)dx− µ2 where µ = E(X).
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Example: X ∼ Unif(a, b)
Thus f(x) = 1

b−a for a < x < b and zero otherwise. Hence

E(X) =

∫ b

a

x

b− a
dx =

b+ a

2

V ar(X) =

∫ b

a

x2

b− a
dx− (

b+ a

2
)2 =

(b− a)2

12

Chebyshev:

For any nonnegative random variable X and a > 0;

P (X ≥ a) ≤ E(X)/a

Proof is exactly same as in the discrete case. Note that the random variable
being non-negative we can take f(x) = 0 for x < 0.

E(X) =

∫ ∞
0

xf(x)dx ≥
∫ ∞
a

xf(x)dx ≥ a

∫ ∞
0

f(x)dx = aP (X ≥ a)

Change of variables, dimension one:

We start with a theorem in integration well known to you that goes by
the name of change of variable formula or substitution rule.

Suppose (a.b) is an open interval and ϕ be a function on this interval
onto an interval (c, d). To fix ideas and not to get worried about irrelevant
things, imagine that these are bounded intervals (though they need not be).

We assume three things about ϕ.
(i) it is continuously differentiable, this means, it is differentiable and its
derivative ϕ′ is a continuous function on (a, b).
(ii) ϕ′ is never zero, that is ϕ′(x) 6= 0 for all x ∈ (a, b).
(iii) ϕ is a one-one function on (a, b) onto (c, d).
Then conclusion:
(A) ϕ has inverse ψ : (c, d)→ (a, b) which is continuously differentiable.
(B) Let now f be a nice function on (a, b), for example bounded continuous
function. Let g(y) = f(ψ(y)) for y ∈ (c, d). Then the following holds:∫

(a,b)

f(x)dx =

∫
(c,d)

g(u)|ψ′(u)|du. (♠)
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This is precisely substitution rule. You look at the right side and usually
say, put ψ(u) = x so that ψ′(u)du = dx and f(ψ(u)) = f(x) to give you left
side.

We want to see its use for us and generalise this to several variables.
Before we do this three comments are in order.

First, I said you can imagine bounded intervals, simply because integra-
tion over unbounded intervals is defined via bounded intervals increasing to
that unbounded interval. We do apply this result for unbounded intervals
when needed.

Second, i said f is bounded because for unbounded functions integration is
via taking increasing sub intervals on each of which the function is bounded.
This does not mean general case is trivial, one needs to do work, but if
you understand this case, you are in good shape. We apply for unbounded
functions too.

Third point is the following. having said that ϕ′ is continuous and never
zero why did we say that the function ϕ is one-one. is this not a consequence?
yes. By continuity, you see that ϕ′ is either through out strictly positive or
through out strictly negative. Hence it has to be one-one. I am looking into
the future and did not want to take advantage of the fact that we are on R.

One trouble with calculus is that you have a luxurious life in one dimen-
sion. If you do not accept those luxuries, you see that several variable results
are exactly the same as one variable case.

First, let us see the importance of the above formula for us? Suppose X
is a random variable which has a density f(x) which is zero for x 6∈ (a, b).
suppose ϕ is a function as stated above on (a, b) onto (c, d). let us define
a new random variable Y = ϕ(X). It is better to keep in mind that X is
defined on a sample space Ω and Y is defined on the same sample space
Y (ω) = ϕ(X(ω)), simply composition
Then the density of Y is given by

h(y) = f(ψ(y))|ψ′(y)|; y ∈ (c, d).

h(y) is zero for points y not in (c, d).
Why is this so? Enough to show that for any bounded interval (γ, δ)

P{Y ∈ (γ, δ)} =

∫
(γ,δ)

h(y)dy =

∫
(γ,δ)

f(ψ(y))|ψ′(y)|dy.
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Since surely X ∈ (a, b) we know Y ∈ (c, d) surely. It is enough to take
(γ, δ) ⊂ (c, d). In fact we can even take γ, δ ∈ (c, d). If for example γ = c,
then you can take c < γn < δ such that γn ↓ γ = c and apply the result with
γn and take limits. Do not bother about such subtleties.

Let α and β be such that ϕ(α) = γ and ϕ(β) = δ To fix ideas, let us
assume that ϕ′ is positive so that ϕ is increasing; hence α < β and (α, β) is
mapped onto (γ, δ). (Similar argument applies if ϕ′ is negative) Thus

{ω : Y (ω) ∈ (γ, δ)} = {ω : X(ω) ∈ (α, β)}

so that

P{Y ∈ (γ, δ)} =

∫
(α,β)

f(x)dx =

∫
(γ,δ)

f(ψ(y))|ψ′(y)|dy.

as required. The last equality here is simply (♠).

Note that it is not necessary that ϕ be defined on all of R, enough if it is
defined on an open set outside of which your density is zero. A subtle point
arises and can not be left unanswered. But you can safely ignore. Suppose
that there is a sample point ω such that X(ω) is not in this interval (a, b)
where ϕ is defined. Then the above definition Y (ω) = ϕ(X(ω)) makes no
sense for this sample point. However, note that

P{X 6∈ (a, b)} = 0

Thus in your sample space (which we need not see) the set

N = {ω : X(ω) 6∈ (a, b)}

has P (N) = 0. We can define Y (ω) = ϕ(X(ω)) for ω 6∈ N because then
X(ω) belongs to the interval where ϕ is defined. For ω ∈ N put Y (ω) = 0.
It makes no difference (as far as density calculation is concerned) what value
you put because this event is of probability zero.

Here is an example: Let X be Unif(0, 1) and ϕ(x) = − log x defined on
(0, 1). Then (a, b) = (0, 1); (c, d) = (0,∞); ϕ is decreasing; ψ(y) = e−y;
f(x) = 1; g(y) = f(ψ(y)) = 1; ψ′(y) = −e−y. All this leads to

g(y) = e−y y > 0

. Thus Y ∼ exp(1)
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simple change of variables:

Suppose X is a random variable with pdf f . let µ ∈ R. Set Y = X + µ.
Then the density of Y is given by

g(y) = f(x− µ); x ∈ R

This follows from observing that

P (Y ≤ a) = P (X + µ ≤ a) = P (X ≤ a− µ)

=

∫ a−µ

−∞
f(x)dx =

∫ a

−∞
f(x− µ)dx.

where we changed the variable for the last equality. This shows that g is
density of Y .
Equivalently, you can use the above change of variable formula, taking
(a, b) = R; (c, d) = R; ϕ(x) = x+ µ; ψ(y) = y − µ; ψ′ = 1.

More generally, suppose that X has density f . Let µ ∈ R and σ > 0 be
numbers. Set Y = σX + µ. then density of Y is given by

g(y) =
1

σ
f

(
y − µ
σ

)
.

This follows exactly as earlier taking ϕ(x) = σx+ µ.

change of variable, dimension two:

Exactly the same result holds in two dimensions too.
Suppose Ω ⊂ R2 is an open region and ϕ is a function on this region

onto a region Ω′. To fix ideas and not to get worried about irrelevant things,
as earlier, imagine that these are bounded regions (though they need not be).

Let us clearly understand that now ϕ associates with every point of Ω a
point of Ω′; which means there are two real valued functions ϕ1(x1, x2) and
ϕ2(x1, x2) on Ω such that

ϕ(x1, x2) = (ϕ1(x1, x2), ϕ2(x1, x2)).

In other words ϕ1(x1, x2) is the first coordinate of the point ϕ(x1, x2) whereas
ϕ2(x1, x2) is the second coordinate of ϕ(x1, x2). That is all. Note ϕ1 and ϕ2

are real valued functions on Ω.
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We assume three things about ϕ as earlier.

(i) ϕ is continuously differentiable. This means the following. The real
valued function ϕ1 has both partial derivatives

∂ϕ1

∂x1

;
∂ϕ1

∂x2

at each point of Ω and they are continuous (real valued) functions on Ω.
Similarly the real valued function ϕ2 has both partial derivatives

∂ϕ2

∂x1

;
∂ϕ2

∂x2

at each point of Ω and they are continuous (real valued) functions on Ω. We
denote

ϕ′(x1, x2) =


∂ϕ1

∂x1

(x1, x2)
∂ϕ1

∂x2

(x1, x2)

∂ϕ2

∂x1

(x1, x2)
∂ϕ2

∂x2

(x1, x2)


Thus now ϕ′ at each point of Ω is a 2× 2 matrix.
(ii) ϕ′ is non-singular, that is ϕ′(x1, x2) is a nonsingular matrix for all points
(x1, x2) ∈ Ω. remember this is same as saying that its determinant is non
zero.
(iii) ϕ is a one-one function on Ω onto Ω′.

Then conclusion:
(A) ϕ has an inverse ψ : Ω′ → Ω which is again continuously differentiable.
In other words if

ψ(y1, y2) = (ψ1(y1, y2), ψ2(y1, y2))

then both partial derivatives of each of these ψ1 and ψ2 are continuous func-
tions. We denote

ψ′(y1, y2) =


∂ψ1

∂y1

(y1, y2)
∂ψ1

∂y2

(y1, y2)

∂ψ2

∂y1

(y1, y2)
∂ψ2

∂y2

(y1, y2)


We denote |ψ′| to be the modulus of the determinant of the 2× 2 matrix ψ′.
(B). Let now f be a nice real valued function on Ω, for example bounded
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continuous function. Define the composed function g(y) = f(ψ(y)) on Ω′

Then the following holds:∫
Ω

f(x)dx =

∫
Ω′
g(y) |ψ′(y)|dy. (♠)

That is∫ ∫
Ω

f(x1, x2)dx1dx2 =

∫ ∫
Ω′
g(y1, y2) |ψ′(y1, y2)|dy1dy2. (♠)

This is called change of variable formula or substitution rule or Jacobian
formula. ψ′ is called the Jacobian matrix.
You may find the change of variable formula to be a little boring, because
I made the statement longer than what it is. This is just to make clear to
you what exactly the hypothesis is and the meaning of the terms involved.
Remember, we shall not prove everything we use. But we should be clear
about what we are using. You can not say ‘by such and such a theorem’
without even knowing the statement of the theorem. You are excused if you
do not know the proof. But you must know the meaning of what you are
saying.

OK, what is the use of the change of variable?

Review of integration:

First review of bivariate integrals. You will learn, possibly with a different
definition, integration of functions of two variables. But what we do now is
equivalent to what you will learn in calculus for functions we deal with
in our course. However that definition may not be same as this for all
functions.

Suppose you have a function f(x1, x2) of two variables. By definition (our
definition)

∫∫
f(x1, x2)dx1dx2 or simply

∫
f(x)dx is the following number.

Fix x2, then x1 7→ f(x1, x2) is a function of just one variable x1; integrate it
using usual functions of one variable; you get a number, say g(x2) depending
on the x2 which you fixed; now you integrate this function of one variable
x2 7→ g(x2), you will get a number. This number is by definition

∫
f(x)dx.

Natural question is whether you can fix x1 and perform integration w.r.t. x2

first of the function x2 7→ f(x1, x2) to get a number h(x1) and then perform∫
h(x1)dx1. Yes, you can. Of course like interchange of order of summation,

this interchange is not always permitted, but in our course we have only such
functions for which this is valid. Do not worry.
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Integrating a function ϕ over a rectangle or disc or a region means inte-
grating the function f which is ϕ over the region under consideration and
zero outside the region.

Example: Integrate the constant function 1 over the rectangle (a, b)×(c, d)
bounded rectangle.

If you fix y(not using x2) then integral is (b − a) if y ∈ (c, d); otherwise
integral is zero. Now integrate this function to get the answer (b− a)(d− c)
— area of the rectangle.

Example: integrate the constant function 1 on the disc D = (x2 +y2 ≤ 1).
If you fix −1 ≤ y ≤ 1, then the function is 1 on −

√
1− y2 ≤ x ≤

√
1− y2

and zero otherwise and so the integral is 2
√

1− y2 whereas for y 6∈ [−1,+1]
the integral is zero. Thus required integral is∫

fdxdy =

∫ +1

−1

2
√

1− y2dy = 4

∫ 1

0

√
1− y2dy = π

(put y = sin θ, dy = cos θdθ etc) we get area of the disc.

Normal integral again:
Let

a =

∫ ∞
−∞

e−x
2/2dx

Then

a =

∫ ∞
−∞

e−x
2/2dx

a2 =

∫ ∞
−∞

e−x
2/2dx

∫ ∞
−∞

e−y
2/2dx

Remembering dxdy is integrating one by one we see

a2 =

∫ ∞
−∞

∫ ∞
−∞

e−(x2/2 +y2/2)dxdy =

∫
f(x, y)dxdy

Now consider

Ω = R2 \ {(x, 0) : x ≥ 0}; Ω′ = (0,∞)× (0, 2π)

ϕ(x, y) = (r, θ); r =
√
x2 + y2; θ = tan−1(y/x)

ψ(r, θ) = (r cos θ, r sin θ); ψ′(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)
|ψ′(r, θ) = r; g(r, θ)|ψ′(r, θ) = re−r

2/2

95



we see

a2 =

∫
f =

∫
g|ψ′| =

∫ ∞
0

∫ 2π

0

re−r
2/2 = 2π 1

giving
a =
√

2π

as discovered earlier.

Comment: Here r, θ. are called polar coordinates. We removed part of x-
axis to make ϕ well defined (what is theta at zero?) and to make it smooth
(what are limits of theta as you go from above/below x-axis towards the
point (5, 0)?).

Gamma and beta:

We shall now prove

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
; i.e Γ(a)Γ(b) = Γ(a+ b)β(a, b) (♣)

Take
Ω = (0,∞)× (0,∞); Ω′ = (0,∞)× (0, 1)

ϕ(x1, x2) = (x1 + x2,
x1

x1 + x2

) = (y1, y2); ψ(y1, y2) = (y1y2, y1(1− y2))

ψ′(y1, y2) =

(
y2 y1

(1− y2) −y1

)
|ψ′| = y1

f(x1, x2) = e−x1xa−1
1 e−x2xb−1

2 ; g(y1, y2) = e−y1ya−1
1 ya−1

2 yb−1
1 (1− y2)b−1∫∫

f = Γ(a)Γ(b);

∫∫
g|ψ′| = Γ(a+ b)β(a, b)

Change of variable formula shows (♣).

Definition: Joint density of two random variables X1, X2 is a function f(x1, x2)
such that for any rectangle � = (a, b)× (c, d);

P{(x1, x2) ∈ �} =

∫∫
�

f =

∫ d

x2=c

∫ b

x1=a

f(x1, x2)dx1dx2.

This is same as saying P (X ∈ Ω) =
∫
Ω

f for any region Ω, not only for rect-

angles. Here we used X = (X1, X2).
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Transformation of densities:

Here is analogue of the result in one dimension concerning change of den-
sioties for functions of random variables.
Suppose (X1, X2) have joint density given by f(x1, x2) which is zero for points
not in an open region Ω. Suppose ϕ : Ω→ Ω′ as in the change variable theo-
rem satisfying those three conditions. Then g(y1, y2)|ψ′(y1, y2)| for points in
Ω′ and zero for points not in Ω′ is joint density of (Y1, Y2) = ϕ(X1, X2).

Definition: X1, X2 defined on a space are independent if their joint density
equals product of marginals, that is, f(x1, x2) = f1(x1)f2(x2). More precisely
the function f1(x1)f2(x2) is a joint density of (X1, X2).
Here we used f1 for density of X1 and f2 for density of X2.

This is same as saying for any intervals (a, b) and (c, d)

P{X1 ∈ (a, b);X2 ∈ (c, d)} = P{X1 ∈ (a, b)} × P{X2 ∈ (c, d)}

This is also same as saying for any two numbers u, v

P (X ≤ u, Y ≤ v) = P (X ≤ u)× P (Y ≤ v)

Beta, Gamma again:

The earlier argument showing Γ(a)Γ(b) = Γ(a + b)β(a, b) actually shows
the following:
If X1 ∼ Γ(a), X2 ∼ Γ(b) and are independent, then the following holds:
Y1 = X1 + X2, Y2 = X1/(X1 + X2) are independent and Y1 ∼ Γ(a + b) and
Y2 ∼ β(a, b).

Orthogonal transforms and bivariate normals

suppose that X1, X2 are independent standard normal. Let

Y1 =
X1 +X2√

2
; Y2 =

X1 −X2√
2

.

By independence we see that joint density of (X1, X2) is

f(x1, x2) =
1

2π
e−(x21+x22)/2

Here Ω = R2 = Ω′.

ϕ1(x1, x2) =
x1 + x2√

2
; ϕ2(x1, x2) =

x1 − x2√
2
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ψ1(y1, y2) =
y1 + y2√

2
; ψ2(y1, y2) =

y1 − y2√
2

ψ′(y1, y2) =

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
; |ψ′| = 1

Finally

h(y1, y2) =
1

2π
e−(y21+y22)/2

Thus Y1, Y2 are independent standard normal again.
In fact we can take any orthogonal transformation: Y = AX where

AAt = AtA = I. For example

Y1 = X1 cos 17o +X2 sin 17o; Y2 = −X1 sin 17o +X2 cos 17o

are also standard normal and are independent
Just as in one dimension we have the following special case of transformations:

translation/scaling:

Suppose X = (X1, X2) has joint density f(x) = f(x1, x2). Let µ =
(µ1, µ2) ∈ R2. Define Y = (Y1, Y2) = (X1 + µ1, X2 + µ2). Then density of Y
is given by g(y1, y2) = f(x1 − µ1, x2 − µ2)

More generally, suppose A is a non-singular 2×2 matrix and Y = AX+µ
then Y has density g(y) = f(A−1(y − µ))| detA−1|

In particular, if we take any symmetric positive definite 2 × 2 matrix
Σ, then taking X1, X2 independent standard normals and taking a positive
definite symmetric matrix A such that A2 = AAt = Σ and any µ ∈ R2; we
see the following is a density function:

g(y) =
1

2π|Σ|1/2
e−(y−µ)tΣ−1(y−µ)/2; y ∈ R2.

Random variable Y = (Y1, Y2) with above density function is called bivariate
normal with mean vector µ and covariance matrix Σ; denoted Y ∼ N2(µ,Σ).

change of variable, dimension k:

Exactly the same result as in one and two dimensions holds. Even though
there is nothing new, I shall spell out so that (there is a non-zero chance that)
you will read again and understand better.

Suppose Ω ⊂ Rk is an open region and ϕ is a function on this region onto
a region Ω′ ⊂ Rk.
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Now ϕ associates with every point of Ω a point of Ω′; which means there
are k real valued functions ϕ1(x), ϕ2(x) · · · ϕk(x) for x ∈ Ω such that
ϕ(x) = (ϕ1(x) . . . , ϕk(x)). In other words ϕi(x) is the i-th coordinate of the
point ϕ(x). Note ϕi are real valued functions on Ω.
We assume three things about ϕ as earlier.

(i) ϕ is continuously differentiable. This means the following. For each
i, The real valued function ϕi has all k partial derivatives ∂ϕi

∂xj
for 1 ≤ j ≤ k,

at each point of Ω and they are continuous (real valued) functions on Ω. We
denote ϕ′(x) the k×k matrix of functions: (i, j)-th element is ∂ϕi

∂xj
. Thus i-th

row consists of the poartial derivatives of i-th function ϕi. Thus now ϕ′ at
each point of Ω is a k × k matrix.
(ii) ϕ′ is non-singular, that is ϕ′(x) is a nonsingular matrix for all points
x ∈ Ω — equivalently, its determinant is non zero.
(iii) ϕ is a one-one function on Ω onto Ω′.

Then conclusion:
(A) ϕ has an inverse ψ : Ω′ → Ω which is again continuously differentiable.
In other words if ψ(y) = (ψ1(y), . . . , ψk(y)) then all the k partial derivatives
of all the k functions, ψi are continuous functions. We denote ψ′(y) the
k × k matrix whose (i, j)-th element is ∂ψi

∂xj
. Thus i-th row consists of the

partial derivatives of i-th function ψi. We denote |ψ′| to be the modulus of
the determinant of the k × k matrix ψ′.
(B). Let now f be a nice real valued function on Ω, for example bounded
continuous function. Define the composed function g(y) = f(ψ(y)) on Ω′

Then the following holds:∫
Ω

f(x)dx =

∫
Ω′
g(y) |ψ′(y)|dy. (♠)

integration in k dimension:

Suppose f(x) = f(x1, x2, · · · , xk) is a nice real valued function of k
variables. We define its integral as follows. First calculate for each fixed
x1, . . . , xk−1:∫ ∞

−∞
f(x1, · · · , xk−1, xk)dxk = fk−1(x1, · · · , xk−1); (say)

Then for each fixed (x1, · · · , xk−2) calculate∫ ∞
−∞

fk−1(x1, · · · , xk−2, xk−1)dxk−1 = fk−2(x1, · · · , xk−2); (say)
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Continue, continue. to get∫ ∞
−∞

f1(x1)dx1 = f0 (say)

Observe that each integral above is integral of function of one variable only
which we know. Further f0 is a number. This number is called integral of f
denoted ∫

f or

∫
f(x)dx or

∫
Rk

f(x)dx or

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, x2, · · · )dx1dx2 · · · dxk

If you have to integrate f over a region Ω, then you iconsider g = f on Ω
and g = 0 outside Ω and integrate g as above. Thus∫

Ω

f =

∫
Rk
g

where g(x) = f(x) for x ∈ Ω and g(x) = 0 for x 6∈ Ω.
You can try when f is indicator of a cube (?). As in two dimensions, for

functions we ever come across in our course, the order does not matter, you
can integrate variables one by one — your convenience!

translation in dimension k;

Let f be a nice function on Rk. Let µ ∈ Rk. Define g(x) = f(x−µ). Then∫
f =

∫
g. Use the change of variable with Ω = Ω′ = Rk and ϕ(x) = x + µ

so that ψ(y) = y − µ and ψ′ = I, the identity matrix. Thus∫
f(x)dx =

∫
f(x− µ)dx

scaling:

Let f be a nice function on Rk. Let A be a non-singular x × k matrix.
Define g(x) = f(Ax). Then

∫
f = |A|

∫
g. Use the change of variable with

Ω = Ω′ = Rk and ϕ(x) = A−1x so that ψ(y) = Ay and ψ′ = A. Thus∫
f(x)dx =

∫
f(Ax)|A|dx

Usually you say, put Ax = y on right side so that |A|dx = dy to get left side.
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positive definite matrices:

We consider only symmetric matrices in what follows. A symmetric k×k
matrix Σ is called positive definite if all its eigen values are strictly positive.
You can easily show that this is same as saying the following: For each v ∈ Rk;
〈v,Σv〉 ≥ 0 with equality iff v = 0. In other words Denoting Σ = ((σij)); the
quadratic form ∑

i,j

σijvivj ≥ 0; and = 0 iff v = 0

Given any such matrix, there is diagonalization: there is an orthogonal matrix
P (change of basis) such that

Σ = PDP ′ = PDP−1

where D is the diagonal matrix with entries, the eigen values. Consider the
matrix

A = P
√
DP ′ = P

√
DP−1

where
√
D is the diagonal matrix with diagonal entries being Positive square-

roots of diagonal entries of D, thus, square roots of eigen values. makes sense
because these are positive. Also this is nonsingular and symmetric. This is
denoted

√
Σ, notation justified because

A2 = AA′ = Σ; A symmetric, positive definite.

Multivariate normal:

Let now Σ be any k × k positive definite symmetric matrix. Let µ ∈ Rk.
Then we claim∫

Rk
f(x) = 1; f(x) =

1

(2π)k/2|Σ|1/2
e−

1
2

(x−µ)′Σ−1(x−µ).

This is very simple. By translation it suffices to prove∫
1

(2π)k/2|Σ|1/2
e−

1
2
x′Σ−1x = 1 or

∫
|Σ|−1/2e−

1
2
x′Σ−1x = (2π)k/2

Apply change of variable: Ω = Ω′ = Rk ϕ(x) = Ax where A =
√

Σ so that
ψ(y) = A−1y and ψ′ = A−1. Note detA = (det Σ)1/2. Apply to the function

f ∗(x) = e−
1
2
x21e−

1
2
x22 · · · e−

1
2
x2k
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where we already know ∫
f ∗ = (2π)k/2

Did you realize you have evaluated a complicated integral of million variables
if k is a million. and Σ is any million by million positive definite matrix.!

This function f is called multivariate normal density; Np(µ,Σ)-density.

It appears to me that most of you have given up (because you do not
appear in class). I do not know if you are paid to learn, but I am paid to
make you understand! Let me see if we should continue with this theme or
change track!
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BVR Probability 2023 week 10

I give some time so that you can familiarize with functions of several
variables, integration, and get a feel for change of variable formula.

We turn to discrete random variables. Sometimes we allow random vari-
ables to take values in a set, not necessarily real values.

Definition: A random variable X is discrete if there is a countable set D such
that P (X ∈ D) = 1. A random variable X is continuous if for every point x in
the range of X, we have P (X = x) = 0. A real valued random variable X
has density function f if for every a < b ∈ R we have

P (a < X < b) =

∫ b

a

f(x)dx.

Thus if X is discrete there is a countable set {d1, d2, . . .} such that for each
i, P (X = di) > 0 and

∑
P (X = di) = 1. Indeed if D = {x1, x2, . . .} is as in

the definition, then
∑
P (x = xi) = P (X ∈ D) = 1. Enumerate only those

xi with P (x = xi) > 0 to get {d1, d2, . . .} as stated.
A discrete random variable may be defined on a countable set or on a un-
countable sample space.

frequency of binary digits:
Let Y ∼ Unif(0, 1). This means its density equals 1 for 0 < x < 1 and
equals zero for other values. In particular, for any (a, b) ⊂ (0, 1) the chances
that Y belongs to this interval equals length of the interval. Thus you can
think of Y as a point picked at random from the unit interval.

Recall the following theorem (and prove it):
Let 0 ≤ x ≤ 1.
(i). There is a sequence {εi : i ≥ 1} of numbers; each number is either

zero or one such that

x =
ε1
2

+
ε2
22

+
ε3
23

+ · · · · · ·

(ii) Further if there are two expansions as above (εi : i ≥ 1) and (ηi; i ≥ 1)
then there is a k ≥ 1 such that the following holds:
εi = 1 for i = k; εi = 0 for i > k; AND ηi = 0 for i = k; ηi = 1 for i > k;
AND εi = ηi for i < k.
(Or ηi = 1 for i = k; ηi = 0 for i > k; AND εi = 0 for i = k; εi = 1 for i > k;
AND εi = ηi for i < k.)
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(iii) There do not exist more than two expansions.

When there are two expansions, then the one ending with zeros is called
terminating expansion and the other ending with all ones is called non-
terminating expansion. In what follows, you choose. once and for all, one of
these so that there is no ambiguity. The digits εi are binary digits of x and
more specifically εi is the i-th digit of the number x.

Now let us pick a number Y at random from (0, 1). Let Yi be the i-th bi-
nary digit of Y . Since Y is random, we conclude that each Yi is also random.
If you knew the proof of the above theorem on expansion, then the following
is immediate.

Theorem:
Yi takes values zero and one, each with probability 1/2. Further {Yi; i ≥ 1}
are independent random variables.

As a result the WLLN applies. The average
n∑
1

Yi/n get closer and closer

to E(Y1) = 1/2. The SLLN tells that those sample points ω ∈ (0, 1) for

which 1
n

n∑
1

Yi(ω) 6→ 1/2 has probability zero. This will be restated now. Let

us denote εi(x) for the i-th binary digit of x ∈ (0, 1)

Theorem: Borel’s SLLN:
If we denote b y P the uniform(0, 1) probability, then

P

{
x ∈ (0, 1) :

1

n

n∑
1

εi(x)→ 1

2

}
= 1

Recall uniform probability is the probability with density function 1 on (0, 1)
and zero outside. This gives length as probability for interval (a, b) ⊂ (0, 1).
That is why this is also called length (even if the event is NOT interval),
instead of probability. Thus length of the above set equals one. In other
words, for ‘almost all’ numbers the frequency of digit zero is 1/2.
You can state similar result with decimal expansion: For almost all numbers
in (0, 1) the frequency of each decimal digit equals 1/10.

Example 1: Random Walk:

Consider the set Z of all integers and a walk in this set as follows. Here
is the rule: we start at zero. Every day we toss a fair coin and move one step
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forward (if at 35, move to 36) if Heads up; one step backward (if at 35, move
to 34) if Tails up. Of course, there is a non-zero chance of returning to zero.
For example HT or TH will bring you to zero on day two. The question is:
Are we sure to return to zero? is the chance of ‘ever returning’ one?

This is called simple symmetric random walk in one dimension. One
dimension because we are moving in Z. Random walk because the motion
is not deterministic and is governed by tossing coin, random mechanism.
Symmetric because there is equal chance of moving in either direction. Simple
because only one unit is moved at a time.

We can consider the set Z2, pairs of integers. We start at the origin (0, 0),
which we still denote by 0. We select one of the axes at random and move
in that direction forward or backward at random. Thus, from (a, b) we move
to one of the four points selected at random: (a− 1, b), (a+ 1, b), (a, b− 1),
(a, b + 1). Again it is clear that there is a chance of returning to origin.
Question: Are you sure to return? Is the chance of returning one?.

This is called simple symmetric random walk in two dimensions.
We can consider the set Z3, triples of integers. We start at the origin

(0, 0, 0), which we still denote by 0. We select one of the axes at random and
move in that direction forward or backward at random. Thus, from (a, b, c)
we move to one of the six points selected at random: (a−1, b, c), (a+ 1, b, c),
(a, b− 1, c), (a, b+ 1, c), (a, b, c− 1), (a, b, c+ 1). Again it is clear that there
is a chance of returning to origin. Question: Are you sure to return? Is the
chance of returning one?.

This is called simple symmetric random walk in three dimensions. In our
course we refer to these as simply random walks. The above questions are
dificult because the question depends on infinitely many rvs: entire future
rvs.
Let us denote our position, state, on day n by Xn which obviously is a rv.
Of course X0 = 0. The event of interest is

A = {Xn = 0 for some n ≥ 1}.

Let p(n) = P (Xn = 0) for n ≥ 1. We put p(0) = 1 simply because
P (X0 = 0) = 1. Clearly our event of interest A, is union of all these events
over n ≥ 1, thus the question is: Is P (Xn = 0 for some n ≥ 1) = 1?
Unfortunately these events are not disjoint. Let us disjointify. We define
f (0) = 0 and for n ≥ 1,

f (n) = P (Xm 6= 0,∀ 1 ≤ m < n; Xn = 0).
Thus f (n) is the chances of returning to zero for the first time on day

n. Clearly, on day zero game started and no return has yet taken place and
hence f (0) = 0. Our event of interest is union of all these disjoint events.

105



Thus the question is: Is
∑
f (n) = 1?

Here is a theorem which we shall prove soon:
Theorem:

∑
f (n) = 1 iff

∑
p(n) =∞.

The point to note is that the quantities p(n) are easy to calculate where as
the quantities f (n) are not easy to calculate. The question is about

∑
f (n) and

this theorem converts the problem to a problem about the easily computable
quantities. Accept this for now. Let us see how this helps us.

This reduces our problem, in one dimension, to decide whether the fol-
lowing series converges or not. ∑(

2n

n

)
1

22n

But how do we understand these numbers? This is where we take the help
of James Stirling. Stirling’s formula says n! ∼

√
2πe−nnn+ 1

2 .
What is the notation? Suppose that (an) and (bn) are sequences of strictly

positive numbers. We use

an ∼ bn ⇐⇒ an
bn
→ 1.

From the definition you can show the following.

an ∼ bn; cn ∼ dn ⇒ ancn ∼ bndn;
an
cn
∼ bn
dn

As a result
2n!

n!n!

1

22n
∼ 1√

πn

It is also easy to see that

an ∼ bn =⇒
(∑

an <∞↔
∑

bn <∞
)

This can be seen by just noting that after some stage

1

2
<

an
bn

< 2;
1

2
bn < an < 2bn

Now recall
∑

1√
n

=∞. As a result we conclude that
∑
p(n) =∞ This solves

our problem. Thus
We are sure to return to zero.
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Two dimensions:
As earlier, we can argue to see

p(2n+1) = 0

p(2n) =
n∑
k=0

(2n)!

k!k!(n− k)!(n− k)!

1

42n
.

This is because to be at origin on day 2n, we should have made a certain
number (may be zero, may be n, but not more) of right moves and same
number of left moves and in the remaining (2n − 2k) days we should make
(n− k) up moves and same number of down moves. Thus

p(2n) =

(
2n

n

) n∑
k=0

n!n!

k!k!(n− k)!(n− k)!

1

42n
.

=

(
2n

n

)(
2n

n

)
1

42n
∼ 1

πn
.

Thus again the sum
∑
p(n) =∞. Thus

We are sure to return to the origin.

Three dimensions:
To be at origin on day 2n you need to make certain number k of moves

in X+ direction and same number in X− direction; a certain number l in Y +

direction and same number in Y − direction; make sure k + l ≤ n and in the
remaining 2n− 2k − 2l days half Z+ and half Z− moves. Thus

p(2n) =
∑

0≤k,l,k+l≤n

(2n)!

k! k! l! l! (n− k − l)! (n− k − l)!
1

62n

=

(
2n

n

)
1

22n

1

3n

∑
0≤k,l,k+l≤n

[
n!

k! l! (n− k − l)!

]2
1

3n

If you have positive numbers ai and max ai ≤M then∑
a2
i ≤M

∑
ai

Thus if

max

{
n!

k! l! (n− k − l)!
: 0 ≤ k, l, k + l ≤ n

}
= Mn
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then∑
0≤k,l,k+l≤n

[
n!

k! l! (n− k − l)!

]2
1

3n
≤Mn

∑
0≤k,l,k+l≤n

[
n!

k! l! (n− k − l)!

]
1

3n

But the last sum is just trinomial expansion(
1

3
+

1

3
+

1

3

)n
= 1

Thus

p(2n) ≤
(

2n

n

)
1

22n

1

3n
Mn

We know (
2n

n

)
1

22n
∼ 1√

πn

Remembering that the multinomial terms are the largest at

k = l = (n− k − l) = n/3

(we are careless here) we see

1

3n
Mn ≤

1

3n
n!

(n
3
)! (n

3
)! (n

3
)!

∼ 1

3n
[
√

2πe−nnn+(1/2)] [
√

2πe−n/3(n/3)(n/3)+(1/2)]−3

=
1

2π
33/2 1

n

where we used Stirling. Thus ultimately

p(2n) ≤ αn; αn ∼ Cn−3/2

for some constant C. Since
∑
n−3/2 and hence

∑
αn and hence

∑
p(2n) con-

verges we conclude the following.

chance of NOT returning to the origin is strictly positive.

We were careless at one point: n/3 may not be integer and hence saying
that (n/3, n/3, n/3) term is largest does not make sense. How do you rectify
it? Well, the argument above definitely shows that sum of all p(2n) where n
is multiple of 3, is finite.
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Consider the sum of p(2n) over n of the form 1 mod(3). That is, over all
n of the form 3m + 1. Now the max term is attained at (m,m,m + 1) Do
similar Stirling analysis and show sum is finite.

Then consider n of the form 2 mod(3). The trinomial term for this case
attains maximum at (m,m+ 1,m+ 1) and again show this sum is finite.

Thus you deduce that
∑
p(2n) is finite. AAha, done!

We shall now prove the theorem thus completing the discussion of Ran-
dom Walks. This involves interesting ideas which are valid in more generality.

Renewal Equation:

p(n) =
n∑
k=0

f (k)p(n−k); n ≥ 1.

The first term on right side (k = 0) is zero simply because f (0) = 0. for
aesthetic reasons we keep it. Also later it helps in relating to convolution.

Recall p(n) = P (Xn = 0). In case n is odd both sides are zero and you
can as well assume that n is even. However it is instructive to note that the
renewal equation holds more generally, with the same argument as below.

The event A = (Xn = 0) can be expressed as disjoint union of events
depending on first return to zero – apart from return to zero on day n.

A =
n⋃
1

Ak; Ak = (Xi 6= 0, 1 ≤ i < k; Xk = 0;Xn = 0).

If you take any sample point for which Xn(ω) = 0 then there must be a first
k ≤ n such that Xk(ω) = 0 and hence the above equation holds. By rules
about conditional probability,

P (Ak) = P (Xi 6= 0, 1 ≤ i < k; Xk = 0)P (Xn = 0|Xi 6= 0, i < k; Xk = 0).

= f (k) P (Xn = 0|Xi 6= 0, i < k; Xk = 0). (♣)

Note that under the given condition, irrespective of whatever be Xi for i < k;
if we know (Xk = 0) holds then chances of (Xn = 0) is just the following:
chances of reaching zero on day n starting at zero on day k which is same
as chances of reaching zero on day (n − k); having started at zero initially.
Thus

P (Ak) = f (k) p(n−k).

If you do not like the conditional probability argument (♣), you can directly
calculate the number of outcomes in the event Ak: Consider any sequence of
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H/T of length k having equal number of H and T but never equal before k
(there are f (k)2k such) AND folow it up with any sequence of H/T of length
(n− k) having equal number of H and T (there are p(n−k)2n−k such). Thus,
noting f (0) = 0;

p(n) =
n∑
k=1

f (k)p(n−k) =
n∑
k=0

f (k)p(n−k)

generating functions:

Let us consider the generating functions:

P (s) = p(0) + p(1)s+ p(2)s2 + · · ·+ p(k)sk + · · ·

F (s) = f (0) + f (1)s+ f (2)s2 + · · ·+ f (k)sk + · · ·

which are defined at least for 0 ≤ s < 1. Of course f (n) for n ≥ 1, being
probabilities of disjoint events, F is defined for s = 1 as well.

Observe that, irrespective of whether
∑
p(n) is finite or not we have,

lim
s↑1

P (s) =
∑
n

p(n); lim
s↑1

F (s) =
∑
n

f (n).

Since limit can be interchanged with finite sums and not always with infi-
nite sums let us argue as follows to justify the above equality. First note
that limP (s) exists because P is increasing on [0, 1) Fix any k ≥ 1. Since
everything is non-negative we have P (s) ≥

∑k
n=0 p

(n)sn. Since we have finite

sum on right side, we conclude limP (s) ≥
∑k

n=0 p
(n). This being true for

every k, we conclude limP (s) ≥
∑
p(n). Of course, for every s < 1, we have

P (s) ≤
∑
p(n) so that limP (s) ≤

∑
p(n). Both these inequalities prove the

stated equality.

Cauchy product of series:
Recall that if

∑
an and

∑
bn are two series of numbers then we can define

another series, Cauchy product, as
∑
cn where

cn = a0bn + a1bn−1 + a2bn−2 + · · ·+ anb0

Here then is Cauchy’s theorem: If
∑
an = A and

∑
bn = B and if at least

one of these series is absolutely convergent, then the series
∑
cn converges

and converges to the product AB.
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Now fix an s (0 ≤ s < 1) and consider the two series defining F (s) and
P (s). Note they these being of positive terms they are absolutely convergent
and thus we see by Cauchy’s theorem and renewal equation,

F (s)P (s) = P (s)− 1.

We have here used that renewal equation is valid for n ≥ 1, not for n = 0.
(f (0)p(0) = 0; p(0) = 1.) Thus

P (s) =
1

1− F (s)
; 0 ≤ s < 1. (♠)

Note that F (s) < 1 for 0 ≤ s < 1, so the above makes sense. Moreover,
if
∑
f (n) = 1 then lim

s↑1
F (s) = 1 and (♠) shows that lim

s↑1
P (s) = ∞ or∑

p(n) =∞. On the other hand if
∑
f (n) = c < 1 then lim

s↑1
F (s) = c and (♠)

shows that lims↑1 P (s) = 1
1−c <∞ or

∑
p(n) <∞.

This completes proof of the theorem.

Digression: Brownian motion:
What happens if we move faster but smaller distance; is there a limit

which is in some sense a continuous motion? Yes, need to formualate carefully
and this limiting continuous motion is called Brownian Motion.

Let us consider one dimension again. Let us move every 1/n unit of time
distance of ±1/

√
n. Thus we have rvs indexed {X k

n
: k ≥ 0}. Thus for each

n, we have a process indexed by t running over all k/n, where k ≥ 0. YES,
we can show this has a limit and gives us a continuous process {Xt : t ≥ 0}.

Assuming water is composed of molecules; assuming the pollen molecules
are exhibiting motion due to the bombardment by water molecules; even-
though each single hit of pollen by one water molecule shows no visible
displacement, there are a large number of hits so that there is a visible
displacement over a period of time. One of the fundamental discoveries of
Einstein and Smoluchowski is the following: displacement during an interval
is proportional to the square root of the length of the time interval!
If you recall the CLT, you will see that, in the above continuous process, the
time one random variable is Normal – in the limit.
You can ask many many other questions, but we shall not.

Example 2: Chandrasekhar Model
I have a huge supply of balls, as many as I want. I have two numbers:
0 < p < 1 and λ > 0. Here is a game i play.
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I start with a box having a certain number of balls.
Every morning, I take the balls in the box and for each ball decide to

keep it or throw out. Having done that I add a certain number of balls.
Question: what happens in the long run?
of course, to make sense of the question and answer, you should know the
mechanism of removing and adding balls. Here is how I remove:

Take a ball, toss coin; Heads up decide to remove, Tails up decide to keep.
Do this for each of the balls in the box. Thus if there are 100 balls, you toss
coin 100 times, keep as many balls as the tails obtained and delete as many
balls as the number of Heads obtained.
Here is the mechanism of adding the balls:
Add P (λ) many balls. This means, select an integer in such a way that
chance of selecting n is

e−λ
λn

n!
; n = 0, 1, 2, · · · .

Having selected an integer as above add so many balls. remember there is
no limit for the number of balls being added but it is some finite number. So
there never are infinitely many balls in the box.
Now the mechanism is completely specified. The only thing that needs to
be told is: how did the game start? With how many balls did I start on day
zero?
For simplicity let us assume that we started with zero balls.
later you will see that it does not matter. Even if you decide to roll a die
and start with as many balls as the face that shows up, you will have exactly
the same answer as we get below.

so let pk(n) be the probability of having k balls on day n. Thus if Xn is
the number of balls on day n then you agree that it is a random variable.

pk(n) = P (Xn = k).

Thus pk(0) is one if k = 0 and zero if k 6= 0.

pk(1) = e−λλk/k!

because there is nothing to remove on day one, all the balls are those added
that morning.

pk(2) = P (X2 = k) =
∞∑
i=0

P (X2 = k,X1 = i)
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=
∞∑
i=0

e−λ
λi

i!
P (X2 = k|X1 = i)

Let us denote
pij = P (X2 = j|X1 = i)

To have j balls tomorrow you should keep certain number of balls; this
number can not exceed i (what you have) and also can not exceed j (what
you want to have) and then add some to make total j. Thus

pij =

i∧j∑
l=0

(
i

l

)
qlpi−le−λλj−l

1

(j − l)!
.

In passing let us note that pij is also P (Xn+1 = j|Xn = i) whatever be n;
because we use same mechanism each day.

Returning to earlier calculation

pk(2) =
∞∑
i=0

e−λ
λi

i!

i∧k∑
l=0

(
i

l

)
qlpi−le−λλk−l

1

(k − l)!
.

= e−λ e−λ λk
1

k!

k∑
l=0

(
k

l

)
ql

∞∑
i=l

pi−lλi−l
1

(i− l)!

= e−λ e−λ λk
1

k!
(1 + q)k eλp

= e−λ(1+q) [λ(1 + q)]k/k!.

Exactly the same argument shows

pk(3) = e−λ(1+q+q2) [λ(1 + q + q2)]k/k!.

pk(n+ 1) = e−λ(1 + q + · · ·+ qn) [λ(1 + q + · · ·+ qn)]k/k!.

Lo and behold

pk(n)→ e−λ/p (λ/p)k
1

k!
.

Thus in the long run you expect to have P (λ/p) many balls in the box. In
the long run, as usual means: rigorously ‘as n→∞’ and in practice ‘for all
large n’.

This model is called Chandrasekhar model. What is this model for and
why are we removing and adding balls?
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Well, actually balls are not balls and box is not box and day is not day
and we are doing nothing either. Then is this all a hoax?

Imagine a Huge glass vessel filled with liquid. You put some coloured
suspended particles (simply referred to as particles) into it. You fix, a small
piece of volume in the middle of the vessel. This small piece of volume is
our box (not the big thing). Day is not a day, but (1/200)th of a second.
During every time interval, some of the particles (in the small volume, I fixed
my attention on) leave that volume. Of course, some particles, from the Jar
outside this volume, enter during this period.
What we discussed is precisely modelling this phenomenon. This model is
due to Astrophysicist S Chandrasekhar. Data was actually collected, he was
testing Brownian motion calculations in the theory of molecular fluctuations.
Why Poisson for the number of particles entering the volume under focus?
There are so many particles in the Huge jar, each having a small chance of
entering our region. Now you know what should be a good model for the
number of particles entering.

Example Card Shuffling:
Consider usual deck of 52 cards arranged in a stack, say top to bottom
cards numbered 1 to 52. Pick two numbers (with replacement) at random,
1 ≤ i, j ≤ 52. Interchange the cards at positions i, j. You have a new
arrangement of the stack. Of course, if i = j nothing changes. So be it.
Repeat for ever.
Question: What happens in the long run?
It will be a well shuffled deck! Let us denote by Xn the stack arrangement
on day n. Thus values of Xn are not real numbers, but Permutations of the
deck, equivalently, elements of S52. We can show

P (Xn = π)→ 1

52!
∀ π ∈ S52

Thus the deck will be in random order.
You can select i, j without replacement. Result is same.
If you want to change only one card, you can do too as follows: Given a
stack, select 1 ≤ i ≤ 52 at random. Put top card (position 1) at position i;
do NOT change others. the final conclusion is same!
This technique is very useful because many times you want to pick an ele-
ment at random from a given finite set.

Example: Ehrenfests
Here is a very instructive dynamics of historical importance. Start with a
box having two compartments H,C. I have 2000 balls numbered 1 to 2000.

114



I toss a fair coin. Heads up I put 1900 balls in H and others in C. If Tails,
I put 1901 balls in H and others in C. Here is how we continue the game.
We pick a number from S = {1, 2, · · · , 2000} at random, see where ball of
that number is and move it to the other compartment. Here Xn is the number
of balls in the compartment H after n exchanges. Thus Xn ∈ S. Once you
know how many balls are in H, you know 2000−Xn are in the compartment
C.
From a state i we move to (i − 1) (if you have selected one of these i balls
and so) with probability i/(2R); you move to (i + 1) (if you have selected
ball from other compartment and so) with probability (1− i

2R
). Repeat.

Question: What happens in the long run?
This model was proposed by the physicists, Ehrenfests (Paul Ehrenfest and
Tatiana Ehrenfest) to clarify and explain subtle points in the phenomenon
of heat exchange. The compartment H has hot milk and C has cold water.
The balls are the molecules (and hence R is a huge number). Exchanging
ball from M to W signifies a fast moving milk molecule colliding with a
slow moving water molecule and thus increasing its momentum. Similarly
exchanging ball fromW toM signifies a water molecule doing the same. Keep
in mind the exchange of heat is not a one way process; a water molecule which
gained momentum earlier may now bump into a slow moving milk molecule
and impart momentum. The number of balls in a compartment signifies its
temperature.

Just as there was a steady state in the Chandrasekhar model, here too
you can show (in some sense) there is a steady state: In the limit it appears
as if the balls are distributed at random into the two compartments. Thus
limiting distribution of number of balls in H is binomial(2000, 1/2).

P (Xn = k)→
(

2000

k

)
2−2000 0 ≤ k ≤ 2000

Hence on the average there are 1000 balls in each compartment. Remem-
bering number of balls signifies the temperature of the compartment, we see
both water and milk reach a common temperature.

In all these examples there is a set Z or Z2 or Z3 or N or S52 etc. There
is dynamics/motion in the set. We are told how to start and we are told how
to move. These are the systems we study now.
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All the previous examples have the following commonality.
There is a finite or countable set, to be called, State Space S. There is a

probability µ on S – {µ(i), i ∈S}. This tells you how to start on day zero.
Start at i with probability µ(i). This is called initial distribution. For each
state i, there is a probability {pij : j ∈ S}. This tells that on any day if you
are at i, then (do not ask how did you come to i) move to j with probability
pij. These numbers pij are arranged as a S×S matrix: P = ((pij))i,j∈S. This
P is called transition matrix. We sometimes write p(i, j) instead of pij.
We use P for probability of events as well as for transition matrix but there
would be no confusion.

Definition: A sequence of random variables {Xn, n ≥ 0} is called markov
chain with initial distribution µ and transition matrix P if

P (X0 = i) = µ(i) i ∈ S

and

P (Xn+1 = j X0 = i0, . . . , Xn−1 = in−1, Xn = i) = pij, n ≥ 0; i, j ∈ S

Thus the dynamics is that on any day if you are at i you move to j with
probability pij.

� For one dimensional random walk,
S = Z; and µ(0) = 1.
pi,ı±1 = 1/2 pij = 0 for j 6= i± 1.

� For two dimensional random walk
S = Z2. µ{(0, 0)} = 1
p(i,j),(k,l) = 1/4 if |i− k|+ |j − l| = 1 and zero otherwise.

� For Chandrasekhar model
S = {0, 1, 2, . . .} µ(0) = 1

pij =

i∧j∑
l=0

(
i

l

)
qlpi−l e−λλj−l

1

(j − l)!

� For Ehrenfests model
S = {0, 1, 2, . . . , 2000} µ(1900) = 1

2
= µ(1901)
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pi,i+1 =
2000− i

2000
pi,i−1 =

i

2000

� For card shuffling
Z = S52 the set of permutations of {1, 2, . . . , 52} OR of the 52 cards.
understanding is π means the vertical stack:
top card π(1) and bottom card π(52).
µ(π0) = 1 for some permutation.
For the i, j interchange shuffle when i, j are selected with replacement, the
transition matrix is:
pπ,π = 1/52
pπ,η = 2/(52 × 51) if there is i0 6= j0 such that η(i0) = π(j0); η(j0) = π(i0)
and η(i) = π(i) for i 6= i0, j0.
For the top to random shuffle
pπ,η = 1/52 if there is an i0 (1 ≤ i0 ≤ 52) such that
η(i0) = π(1) and η(i) = π(i+ 1) for i < i0 and η(i) = π(i) for i > i0.
Note that if i0 = 1 then there is no i with i < i0 and η = π.

We do not worry as to where the random variables are defined. Our
interest is to calculate probabilities and say something interesting (and of
immense use). Here is how we calculate.

(i) P (X0 = i0) = µ(i0). this follows from definition.

(ii) P (X0 = i0, X1 = i1) = µ(i0)p(i0, i1) because
left side equals P (X0 = i0)P (X1 = i1 X0 = i0)

(iii) P (X0 = i0, X1 = i1, X2 = i2) = µ(i0)p(i0, i1)p(i1, i2)
because left side equals
P (X0 = i0)P (X1 = i1 X0 = i0)P (X2 = i2 X0 = i0, X1 = i1)

(iv) In general for any n

P (X0 = i0, · · ·Xn−1 = in−1, Xn = in) = µ(i0)
n∏

m=1

p(im−1, im)

(v) For any n ≥ 0 we have P (Xn+1 = j Xn = i) = p(i, j).
You can dispose this by saying that it is a consequence of the definition of
the dynamics. But remember the dynamics only tells you
P (Xn+1 = j X0 = i0, . . . , Xn−1 = in−1, Xn = i) = p(i, j).

However, since we explained how probabilities are to be calculated, it is
better to see directly that the definition of conditional probability gives the
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formula above. Left side equals by definition

P (Xn+1 = j,Xn = i)

P (Xn = i)

=

∑
P (Xn+1 = j,Xn = i,Xn−1 = in−1, . . . X0 = i0)∑

P (Xn = i,Xn−1 = in−1, . . . X0 = i0)

where the sum in both numerator and denominator is over (i0, . . . , in−1).∑
µ(i0)p(i0, i1) · · · p(in−1, i) p(i, j)∑

µ(i0)p(i0, i1) · · · p(in−1, i)
= p(i, j)

For this reason the matrix P = ((pij)) is also called the one step transition
matrix. Let us denote the powers of this matrix by P 2, P 3, . . .. Also let us
denote the entries of Pm by p(m)(i, j) or p

(m)
ij . We see now that P 2 is the

two step transition matrix and in general Pm is the m-step transition matrix.

(vi) For any n ≥ 1 we have P (Xn+1 = j Xn = i,Xn−1 = in−1) = p(i, j).
More generally if m1 < m2 < · · · < ml < n < n+ 1 then
P (Xn+1 = j Xm1 = i1, Xm2 = i2, . . . Xml = iml , Xn = i) = p(i, j).
The proof is exactly as above. Thus any exact information about the past is
irrelevant if you have yesterday’s information. You can in fact strengthen this
to say among all past information, the most recent information is enough.
Just keep in mind we need exact information about the state, not like: the
sate on day 2 is this or that. Suppose m1 < m2 < · · · < ml < m < n+ 1
P (Xn+1 = j Xm1 = i1, Xm2 = i2, . . . Xml = iml , Xm = i)
= P (Xn+1 = j Xm = i).

(vii) For any n ≥ 0 we have P (Xn+2 = j Xn = i) = p(2)(i, j).
This is immediate from previous result

P (Xn+2 = j Xn = i) =
∑
k

P (Xn+2 = j,Xn+1 = k Xn = i)

= P (Xn+1 = k Xn = i)P (Xn+2 = j Xn = i,Xn+1 = k) =
∑
k

pikpkj

as stated.

(viii) For any m ≥ 1 and any n; P (Xn+m = j Xn = i) = p
(m)
ij , the ij-th

element of the matrix Pm.
in other words Pm is the m-step transition matrix; its i-th row tells you
where you are after m days if you are at i today. The proof is exactly as
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above. We define P 0 to be the identity matrix.

(ix) Chapman-Kolmogorov equation:

p
(m+n)
ij =

∑
k

p
(m)
ik p

(n)
kj m,n ≥ 0; i, j ∈ S

We shall now define two important concepts.
This follows from definition.

Definition:
A state i leads to j, if for some m ≥ 1, p(m)(i, j) > 0; symbols: i j.
A chain is irreducible if i j for all i, j.
For a state i, its period d(i) = gcd{n ≥ 1 : p

(n)
ii > 0}, if this set is non-empty.

The chain is aperiodic if period equals one for all states.
Thus a chain is irreducible if any two states communicate i  j and

j  i. It is enough to say any to different states communicate; because then
Chapman-Kolmogorov tells that this happens even when i = j. Also by the
C-K equations the set defining d(i) has the property that if m,n are in the
set then m+ n is also in the set.

Here are two basic theorems (we do no more):

Theorem 1: For a finite state chain with transition matrix P

I + P + · · ·+ P n−1

n
→ Q

for some stochastic matrix Q. Further QP = PQ = QQ = Q.

Theorem 2: For a finite state irreducible aperiodic chain with transition
matrix P ,

P n → Π

for some stochastic matrix Π, with all rows same. Thus if π denotes its first
row, then all rows equal π. Further
(i) πP = π.
(ii) P (Xn = j X0 = i)→ π(j) whatever be i.
(iii) If X0 ∼ π then Xn ∼ π for all n. More generally for all n,m, we have
(X0, . . . , Xm) ∼ (Xm, Xm+1, . . . , Xn+m) if X0 ∼ π.
(iv) For almost all sample points,

#{0 ≤ m ≤ n− 1 : Xm = j}
n

→ π(j)
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(v) If P (X0 = i) = 1, then there is surely there is an m such that Xm = i
and the expected return time equals 1/π(i).

Here is explanation of theorem 2.

(i) says that π is a left eigen vector for P corresponding to the eigen value
1. Recall P being stochastic, 1 is an eigen value with right eigen vector e
consisting of all ones. This π is ‘the’ left eigen vector. Thus this is a purely
linear algebra result.
(ii) says that π is the final equilibrium distribution, no matter where you
start. Thus there is no dependence on initial data. This is also called steady
state distribution.
(iii) says that if your initial distribution is π then it remains so for any day,
In other words it is stationary. Thus it is called stationary initial distribu-
tion. Not only every day it remains so, any stretch appears stationary. The
distribution on any consecutive five days looks same – does not depend on
when you start counting these five days.
(iv) says that the proportion of time you spend in each state is given by this
vector. Thus π(i) is the proportion of time you spend in state i, no matter
how you started.
(v) says that if you started in state i, you will surely return. Suppose that
f (n) for n ≥ 1 denotes the probability of first return on day n; that is

f (n) = P (Xn = i,Xm 6= i ∀1 ≤ m < n X0 = i

Then the expected return time:
∑
nf (n). equals 1/π(i).

Now you see the importance of the vector. Also, from practical point, if
you simulate and run the chain for a long time, say N , then what you see as
XN will be a sample from the distribution π. That is P (XN = i) is ‘nearly’
π(i). In particular, if π is uniform probability π(i) = 1/|S|, then what you
see as XN is a point picked at random from S.

Of course in the irreducible, aperiodic case you can get theorem 1 from
theorem 2. This simply Cesaro’s theorem or numbers: if an → a then
(a1 + a2 + · · · + an)/n → a. The interesting point is that theorem 1 has
no hypothesis. Obviously, we can not say that the limit matrix has identical
rows in theorem 1, it is false in general. Both theorems are ‘largely’ true even
in the infinite state space situation also. Unfortunately, you can not then say
Q is a stochastic matrix; it could be the all-zero matrix. Similarly with π.
In case of finite state space the hypothesis of theorem 2 is same as saying
that some power of P has all entries strictly positive.

120



Proof of theorem 1 is simple.
Let us denote

Qn =
I + P + · · ·+ P n−1

n

Since there are finitely many sequences, {qn(i, j) : n ≥ 1}, one for each pair
(ij) in the finite state space we can take common convergent subsequence.
Thus select n1 < n2 < n3 < · · · such that

Qn1 , Qn2 , Qn3 , · · ·

converges to say Q. Note that

PQn =
P + P 2 + P 3 + · · ·P n

n
= Qn −

I

n
+
P n

n

writing the above equation for our subsequence

PQnr = Qnr −
I

nr
+
P nr

nr

and taking limits we get PQ = Q. We used the fact that entries of P n are
all bounded between zero and one.

Similarly QP = Q. This in turn tells QP n = Q and taking averages we
get QQnr = Q, now taking limits we see QQ = Q. Thus

PQ = QP = QQ = Q (♠)

It remains to show that the entire sequence (Qn) converges. Suppose
that for some (i∗j∗), the entries qn(i∗, j∗) do not converge to qi∗j∗ where
Q = (qij) is the above sub-sequential limit matrix. So there is an ε > 0
such that infinitely many terms are outside the interval (qi∗j∗ − ε, qi∗j∗ + ε).
Again boundedness of the sequence tells us that we can get a convergent
subsequence of those infinitely many that lie outside this interval. of course
they can not converge to qi∗j∗ . The upshot is that we can get a subsequence

m1 < m2 < m3 < · · · , such that {q(mr)
i∗j∗ ; r ≥ 1} converges to a number

different from qi∗j∗ . By taking a further subsequence of this, we can safely
assume that the matrices Qm1 , Qm2 , · · · , Qmr , · · · converge, say to Q∗.

Of course Q∗ has also similar properties as Q, namely,

PQ∗ = Q∗P = Q∗ (♣)

Using (♠), we see PmQ = Q and taking averages we see QmrQ = Q and
taking limits we see

Q∗Q = Q (•).
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Using (♣), we see Q∗P n = Q∗ and taking averages we see Q∗Qnr = Q∗ and
taking limits we see

Q∗Q = Q∗ (••).
Now (•) and (••) tell that Q = Q∗ which is a contradiction because they
differ in the (i∗j∗)-th term.

This shows that the entire sequence Qn converges. Since we have a finite
matrix, row sum of limit equals limit row sum and hence equals one. Non-
negativity is clear. Thus Q is stochastic matrix.

Before proving theorem 2, we recall some simple facts.
(1o) The only subgroups of Z are G = {0} and G = gZ for some g ≥ 1.

(2o) Let S ⊂ {1, 2, . . .}, finite or infinite, but non-empty. Then gcdS
make sense (exists).
Indeed, if S is finite you knew in high school. In any case, let m be an element
of S. If it divides all elements of S, then done, remember m ∈ S. Otherwise
try m− 1. Continue this way, there are only finitely many integers below m
and you will surely stop and that will be gcdS. If you reached one already
then one is gcdS.

(3o) if gcdS = a then there are elements s1, . . . , sk ∈ S and integers
x1, . . . , xk such that a =

∑
xisi.

Indeed the collection of all such elements
∑
xisi is a group and both S and

this have same gcd, but if G = gZ (g ≥ 1) then clearly g is gcd of G.

(40) Suppose S ⊂ {1, 2, . . .} non-empty and has gcd 1. Assume that S
has the property: m,n ∈ S implies m + n ∈ S. Then there exists n0 such
that n > n0 implies n ∈ S.
get the gcd 1 =

∑
xisi let us put x as sum of those xisi where xi > 0 and −y

as sum of those xisi where xi < 0. Thus x− y = 1. Because of the assumed
condition on S, we see x, y ∈ S. Now let n > y2 then we can write n = dy+r
where 0 ≤ r < y and d ≥ y. This last one is because n > y2. Thus

n = dy + r1 = dy + r(x− y) = (d− r)y + rx

Thus n is a non-negative combination of x, y and is hence in S.

(5o) For an irreducible chain period does not depend on the state, that
is, d(i) = d(j) for all i, j.

Indeed fix i 6= j. By irreducibility fix a, b such that p
(a)
ij > 0 and p

(b)
ji > 0.

Observe that by C-K equations, p
(b+a)
jj > 0 and p

(a+b)
ii > 0. Thus d(i) and
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d(j) both divide a + b. Again by C-K, we see that whenever p
(n)
ii > 0 , then

p
(b+n+a)
jj > 0 so that d(j) divides b + n + a and hence divides n. Thus d(j)

divides all n with p
(n)
ii > 0. In other words d(j) ≤ d(i). Similarly d(i) ≤ d(j).

completes proof of statement.

(6o) In an irreducible aperiodic chain, given (ij) there is n0 such that

n > n0 implies p
(n)
ij > 0.

Indeed fix a such that p
(a)
ij > 0, possible since i j. Fix m such that n > m

implies p
(n)
jj > 0, by earlier result. Now C-K implies p

(a+n)
ij > 0 and this is

true for all n > n0.

(7o) A finite state chain is irreducible and aperiodic iff some power of P
has all entries strictly positive
Indeed if it is irreducible and aperiodic then for fixed (ij) there is n0 so that

p
(n)
ij > 0 for all n > n0. State space being finite there are only finitely many

such pairs and so done. Conversely, if some power of P has strictly positive
entries then we immediately see i j for all i, j. Also if you take any i, then
the set {n ≥ 1 : p

(n)
ii > 0} includes all integers after some stage and hence

must have gcd one.

In view of the above, here is a restatement of Theorem 2:

Theorem 2∗: If a finite state chain with transition matrix P is such that
for some n all entries of P n are strictly positive then P n → Π.

Proof of Theorem 2 is a hands-on calculation.
Let us fix any one n0 with all entries of P n0 strictly positive.and let ε > 0

be strictly below minimum of all the entries of P n0 .
Define for each n, column-wise maximum and minimums of P n matrix.

mn(j) = min
i
p

(n)
ij , Mn(j) = max

i
p

(n)
ij .

Let us fix a state j till further orders and denote mn(j) and Mn(j) by just
mn and Mn. Clearly mn ≤Mn for each n.
Claim:

m1 ≤ m2 ≤ · · · ≤ mn ≤ · · · · · · ≤Mn ≤ · · · ≤M2 ≤M1 (♠)

This is seen as follows. For any i,

p
(n+1)
ij =

∑
k

pikp
(n)
kj ≤Mn

∑
k

pik = Mn
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This being true for each i, max
i
p

(n+1)
ij ≤Mn. In other words Mn+1 ≤Mn for

each n. Similarly

p
(n+1)
ij =

∑
k

pikp
(n)
kj ≥ mn

∑
k

pik = mn

This being true for each i, min
i
p

(n+1)
ij ≥ mn. In other words mn+1 ≥ mn for

each n. Thus claim is proved.

Clearly Mn ≤ 1 and mn0 ≥ ε. Thus

Mn0 −mn0 ≤ (1− ε). (•)

p
(2n0)
ij =

∑
k

p
(n0)
ik p

(n0)
kj

=
∑
k

(p
(n0)
ik − εp

(n0)
jk )p

(n0)
kj +

∑
k

εp
(n0)
jk p

(n0)
kj (add and subtract)

≥ mn0(j)
∑
k

(p
(n0)
ik − εp

(n0)
jk ) + εp

(2n0)
jj by definition of mn0(j)

= (1− ε)mn0(j) + εp
(2n0)
jj row sums are one.

This being true for every i, taking minimum over i, we see

m2n0(j) ≥ (1− ε)mn0(j) + εp
(2n0)
jj (�)

Similarly,
p

(2n0)
ij =

∑
k

(pn0
ik − εp

(n0)
jk )p

(n0)
kj +

∑
k

εp
(n0)
jk p

(n0)
kj ≤ (1− ε)Mr(j) + εp

(2n0)
jj .

This being true for every i, taking maximum over i, we see

M2n0(j) ≤ (1− ε)Mn0(j) + εp
(2n0)
jj (N)

The two inequalities (N) and (�) prove

M2n0 −m2n0 ≤ (1− ε)2. (•)

It is. now easy to see that for every t ≥ 1

Mtn0 −mtn0 ≤ (1− ε)t. (•)

Because of the inequality (♠) the above suffices to show that p
(n)
ij → πj, limit

not depending on i. Thus there is a limit matrix and it has same rows.
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1. We have proved the basic theorem 2. The proof gives rate of conver-
gence also, though not a good one.

Theorem:

|p(n)
ij − πj| ≤ (1− ε)

⌊
n
n0

⌋
Indeed if k = b n

n0
c, then kn0 ≤ n. From proof of the theorem we know

Mkno −mkn0 ≤ (1− ε)k

and mkn0 ≤ mn ≤Mn ≤Mkn0 now tells that Mn−mn ≤ (1− ε)k. Since p
(n)
ij

and πj are both in the interval [mn,Mn] we have the stated inequality.

2. π is left eigen vector corresponding to the eigen value one.

ΠP = (limP n)P = limP nP = limP n+1 = Π

and hence πP = π. Let η = (η1, . . .) be any vector with ηP = η. We show
η = cπ where c =

∑
ηi. Hypothesis implies ηP n = η so that ηΠ = η. Direct

multiplication of left side shows that (
∑
ηi)π = η.

3. All entries of π are strictly positive. First, since row sums of P equal
one, so is it for P n for each n. State space being finite, same is true for the
limit and thus

∑
πi = 1. In particular you can fix s ∈ S with πs > 0. Now

take any j ∈ S. Since s j Fix m such that p
(m)
sj > 0. Use πPm = π to see

πj =
∑
i

πip
(m)
ij ≥ πsp

(m)
sj > 0

4. We know P (Xn = j X0 = i) = p
(n)
ij , the (ij)-th element of P n and hence

converges to πj. Thus distribution of Xn, your position on day n converges
to π. More generally, let X0 ∼ µ. Then Xn ∼ µP n simply because

P (Xn = j) =
∑
i

P (Xn = j,X0 = i) =
∑
i

P (X0 = i)P (Xn = j X0 = i)

=
∑
i

µ(i)p
(n)
ij = (µP n)j

Thus even if X0 ∼ µ then distribution of Xn converges to π. So π is the
equilibrium/steady state distribution of the chain no matter how it started.
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(5) If X0 ∼ π, then as seen above Xm ∼ πPm = π. More generally, in
this case, this leads to

P (X0 = i0, X1 = i1, . . . , Xn = in) = π(i0)pi0i1 . . . pin−1in

P (Xm = i0, Xm+1 = i1, . . . , Xm+n = in) = π(i0)pi0i1 . . . pin−1in

Thus whatever be m,n we have

(X0, . . . , Xn) ∼ (Xm, . . . , Xm+n)

(6) Let us start from j. We show that you surely return to j. This is as
follows. Get as earlier N and ε such that all entries of PNare larger than ε.
Recall that P (Xm+n = j Xm = i) = p

(n)
ij for any m,n.

P (XN 6= j) = 1− P (XN = j) ≤ (1− ε)

P (XN 6= j,X2N 6= j) =
∑
i 6=j

P (XN = i)P (X2N 6= j XN = i)

≤
∑
i 6=j

P (XN = i) (1− ε) ≤ (1− ε)2

Thus we can show by induction that for each m

P (XN 6= j;X2N 6= j; . . . , XmN 6= j) ≤ (1− ε)m (♠)

Define events

Am = (XN 6= j;X2N 6= j; . . . , XmN 6= j) m ≥ 1

A = (XpN 6= j ∀p ≥ 1)

But then Am ↓ A and so P (Am) ↓ P (A) and (♠) implies P (A) = 0. In
particular P (Xn 6= j ∀n) = 0.

Here Am ↓ A means the events Am are decreasing: A1 ⊃ A2 ⊃ A3 ⊃ · · ·
and ∩Am = A. When this happens, we can show P (Am) ↓ P (A).

(7) When the chain starts from i, that is, P (X0 = i) = 1 then it makes
sense to define the first return time T as:
T = n iff {Xn = i; ∀(1 ≤ m < n) Xm 6= i}.
and P (T = n) = f

(n)
ii as was done in the Random walk discussion. Now from

what was proved above, we conclude
∑
f

(n)
ii = 1. Thus T is a legitimate

random variable taking value n with probability f
(n)
ii and E(T ) =

∑
nf

(n)
ii .

This is denoted by mii.
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One can showmii = 1/πi using the uniqueness of the invariant probability,
but we shall not do.

(8) One can use SLLN to show that, no matter how the chain starts, the
proportion of time spent in state i is πi. That is

#{0 ≤ m ≤ n− 1 : Xm = i}
n

→ πi

Since Xm are random variables, they are not states themselves but func-
tions defined on some probability space the above is interpreted as follows:
for almost all sample points the above proportion converges to πi. Thus

P

{
#{0 ≤ m ≤ n− 1 : Xm = i}

n
→ πi

}
= 1

[ Recall: Decimal digits depend on the number you picked from unit interval.
But for almost all choices the proportion of each digit is 1/10.] The above
statement, in particular, implies that you visit each state infinitely many
times.

(9) if the hypotheses of the theorem fail what would happen. Either the
chain is irreducible OR it is irreducible but period is d > 1.

Theorem: For a finite state irreducible chain with Transition matrix
P , there is a unique probability vector π with πP = π. Each entry of π
is strictly positive. No matter how the chain starts the proportion of time
spent in state i equals πi Starting from any state i we surely return to i and
the expected return time is mii = 1/πi.

What we can not say is that P n → Π, a matrix. We can partition the
state space S = S0 ∪ · · · ∪ Sd−1 such that

if i ∈ Sr then pij = 0 unless j ∈ Sr+1. (♣)

Thus if you are in a state in Sr today, you can only go to some state in
Sr+1 tomorrow. We interpret (d−1)+1 = 0 – addition modulo d. Obviously
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then the matrix P looks like

S0 S1 S2 · · · Sd−2 Sd−1

S0 0 P1 0 · · · 0 0

S1 0 0 P2 · · · 0 0

...
...

...
...

...
...

...

Sd−2 0 0 0 · · · 0 Pd−1

Sd−1 P0 0 0 · · · 0 0

and P d is block diagonal matrix. Note that the matrices Pr may not be
square matrices. In fact order of Pr is |Sr| × |Sr+1|

These sets are called cyclically moving subclasses and they are uniquely
determined in the following sense: If you decompose
S = S∗0 ∪ S∗1 ∪ · · · ∪ S∗d−2 ∪ S∗d−1 satisfying (♣)
then there is an r such that
S∗0 = Sr;S

∗
1 = Sr+1;S∗2 = Sr+2; . . . , S∗d−1 = Sr+d−1

Thus your sets are same as the above, but in a different ‘cyclic’ order.
We shall not prove the above.

The other possibility is the chain is not irreducible. Then there are two
possibilities. First is you may be able to decompose the state space into
disjoint sets such that, if the chain starts in one of these sets, then it stays
there and the chain is irreducible there. Then you can understand the full
chain, by understanding how it behaves in each of these sets – noninteracting
disjoint chains. The other possibility is that apart from the irreducible sets
as above, there may be others sets with the following property: if you start
from that set then eventually you leave that set and enter one of the other
irreducible sets and stay there from then on. We shall not get into the details
and examples for possibilities are given in the class.

Ehrenfest revisited:
All the above discussion tells you that
(i) the Ehrenfest chain is heading to a steady state: as if each ball is placed
at random in the two compartments.
(ii) Each state is visited infinitely often: That is you see k balls in H infinitely
many times in (almost) any run of the chain for 0 ≤ k ≤ 2000
if you are not careful, you think that these two conclusions are contradictory:
a steady state in (i) and a chaotic behaviour in (ii). The point is that (i) is
macroscopic behaviour, distribution of the state and not any specific run of
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the chain; whereas (ii) is a microscopic description in each run of the game.
There is no contradiction. This was one of the sources of confusion in the
initial days of the Boltzmann Theory. There are others too like: have you
seen atoms/molecules? In mechanics if a force makes a particle move from
A to B, then you can make it move from B to A by applying same force in
reverse direction. So if wish to explain heat through mechanics of motion
then can you reverse from steady state of common temperature to original
mixture of hot milk and cold water?

Graph Walk:
Consider a connected (undirected) graph G on a finite set of vertices V .
Eventhough what we are going to describe works perfectly well even with
loops and multiple edges, let us assume that there are no loops and multiple
edges. Say that two vertices are neighbours if they are joined. Here is the
walk on V : From any vertex move to one of its neighbours chosen at random.
Thus if dv is the degree of v, then pvw = 1/dv if w is a neighbour of v and
pvw = 0 otherwise. This is irreducible. Its invariant distribution is given by

pπv = dv/d; d =
∑

dv

That this is invariant can be easily verified by using a simple useful fact.:
For a chain with transition matrix P , if you can find a vector π with positive
entries with πipij = πjpji for all i, j, then πP = π. Thus if you. normalize π
then it is an invariant probability vector. Proof of this is easy.∑

i

πipij =
∑
i

πjpji = πj

In the present case, πvpvw = πwpwv = 1/d or zero.

Bose-Einstein again:
Consider a finite set X and a finite group G acting on X. That is, for every
g ∈ G, there is a bijection x 7→ g · x on X such that g1g2 · x = g1 · (g2 · x).
In particular e · x is the identity. map and x 7→ g−1 · x is the inverse map to
x 7→ g · x. Given x ∈ X we define Gx = {g ∈ G : g · x = x}. Gen g ∈ G we
define Xg = {x ∈ X : g · x = x}. Thus Gx ⊂ G and Xg ⊂ X.

Here is the chain with state space X. if at x, pick a h at random from
Gx and then pick a point y at random from Xh. Move to y. What is the
transition matrix? pxy is the chances of picking some h from Gx multiplied by
chances of picking y from Xh. Note that chances of h is zero unless h ∈ Gx.
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But then the chances of y is zero unless h ∈ Gy. Thus

pxy =
∑

h∈Gx∩Gy

1

|Gx|
1

|Xh|

If Ox = {g · x : g ∈ G} is the orbit of x, then you know |G| = |Gx||Ox| Thus

pxy =
|Ox|
|G|

∑
h∈Gx∩Gy

1

|Xh|

If we take

πx =
1

|Ox|
then you see πxpxy = πypyx. Thus if we define Z =

∑
πx and the vector

π = (πx) then π/Z is the invariant probability. What will this do? This picks
an orbit at random. In other words if for each x, π(Ox) =

∑
{π(y) : y ∈ Ox}

is just 1/N where N is the number of orbits. Thus if you run the chain for
a long time and get x, pick the orbit of x, then you have picked a point at
random from the space of orbits.

Here is a special case:

X = {1, 2, . . . , 19}50

space of all sequences (x1, . . . , x50) where each xi is in the set {1, 2, . . . , 19}
Take G = S50, group of permutations of {1, 2, . . . , 19}. Action is the follow-
ing:

π · (x1, . . . , x50) = (xπ(1), . . . , xπ(50))

You can think of X as space of possible placings of 50 numbered balls in 19
numbered boxes (energy levels). But if the balls are photons then B-E tells
that it is not the possible placings that are equally likely, but the orbits are
equally likely. So if you want to pick a B-E configuration at random, then
you run the chain above for a while and get a point x and pick the orbit of
x. This does it.
This chain, called Burnside Chain was introduced by the computer scientists
Jerrum-Sinclair. Its rate of convergence and properties were studied by Persi
Diaconis.
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Back to densities:

We shall now return to densities and discuss normal densities first.

If X ∼ N(µ, σ2), then it has density

f(x) =
1√

2π σ
e−

(x−µ)2

2σ2 −∞ < x <∞

We know E(X) = µ and var(X) = σ2.

Consider two dimensional or bivariate normal. Have a positive definite
matrix Σ and µ ∈ R2

f(x1, x2) =
1

2π|Σ|1/2
e−

1
2

(x−µ)′Σ−1(x−µ); x = (x1, x2) ∈ R2

where prime stands for transpose and x is the column vector but we write
in row for typographical reasons and NOT put transpose for ease in reading.
It is more convenient, in fact necessary in higher dimensions, to use matrix
notations. However we shall do some explicit calculations for two reasons.
Firstly, you should know how the density ‘looks like’ (and not keep it hiding
behind matrix notation) . Secondly, I want to explain conditional densities.

Σ =

(
σ11 σ12

σ21 σ22

)
. Since the matrix is positive definite we must have

σ11 > 0 and we denote it by σ2
1 (with σ1 > 0); similarly σ22 > 0 and we

denote it by σ2
2 (with σ2 > 0). Further being symmetric, σ12 = σ21. Also

determinant being positive, we have σ2
1σ

2
2 > σ2

12. Thus if we denote

σ12

σ1σ2

= ρ

then −1 < ρ < 1 and σ12 = ρσ1σ2. Thus

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
Hence

|Σ| = (1− ρ2)σ2
1σ

2
2

Σ−1 =
1

(1− ρ2)σ2
1σ

2
2

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
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Thus

f(x1, x2) =
1

2πσ2
1σ

2
2

√
(1− ρ2)

× e
− 1

2(1−ρ2)
Q(x1,x2)

(♣)

where

Q(x1, x2) = (
x1 − µ1

σ1

)2 − 2ρ(
x1 − µ1

σ1

)(
x2 − µ2

σ2

) + (
x2 − µ2

σ2

)2

This is the bivariate normal density with means µ1, µ2 and variances σ2
1, σ

2
2

and correlation ρ.
For simplicity, we take µ1 = µ2 = 0 from now on. Thus

f(x1, x2) =
1

2πσ2
1σ

2
2

√
(1− ρ2)

× e
− 1

2(1−ρ2)
Q(x1,x2)

(♠)

where

Q(x1, x2) =
x2

1

σ2
1

− 2ρ
x1

σ1

x2

σ2

+
x2

2

σ2
2

This is bivariate normal density with means zero and variances σ2
1, σ

2
2 and

correlation ρ.
If variances are one

f(x1, x2) =
1

2π
√

(1− ρ2)
× e

− 1
2(1−ρ2)

Q(x1,x2)
(♥)

where
Q(x1, x2) = x2

1 − 2ρx1x2 + x2
2

This is standard bivariate normal density with correlation ρ.
If we take correlation to be zero, then

f(x1, x2) =
1

2π
× e−

1
2

(x21+x22) (♦)

This is bivariate normal density with zero means, unit variances and zero
correlation – or independent standard normals.

We shall from now on consider the bivariate with means zero, variances
σ2

1, σ
2
2 and correlation ρ – thus density (♠) – and justify that means etc are

as stated.

Recall that in the discrete case we had joint distribution of two random
variables:
X taking values (xi; i ≥ 1) and Y taking values (yj, j ≥ 1).
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pij = P (X = xi, Y = yj)
From this we can read marginal distributions:
pi• =

∑
j

pij = P (X = xi)

p•j =
∑
i

pij = P (Y = yj)

Also for each i we can talk of the conditional distribution of Y given X = xi:

pij
pi•

= P (Y = yj X = xi) j = 1, 2, 3, . . .

Conditional expectation of Y given X = xi is nothing but the expectation of
Y w.r.t. the above conditional probability.
Similarly the conditional distribution and conditional expectation of X is
defined for each given value yj of Y .

We shall now imitate those:
Definition: If f(x, y) is the joint density of X, Y ; then the marginal density of
X is defined as

f(x•) =

∫
f(x, y)dy x ∈ R

The conditional density of Y given X = x is defined as

f(y x) =
f(x, y)

f(x•)
y ∈ R

whenever f(x•) 6= 0. When f(x•) = 0 this is not defined. The conditional
expectation of Y given X = x is the expectation of Y w.r.t. the conditional
density, that is

E(Y X = x) =

∫
yf(y x)dy.

Similarly the marginal of Y and conditional density, conditional expectation of
X given Y = y are defined.

Observe that marginal density of X is indeed density of X:

P{X ∈ (a, b)} = P{(X, Y ) ∈ (a, b)×R}

=

∫ b

x=a

∫
R

f(x, y)dydx =

∫ b

a

f(x•)dx

The marginal f(x•) is usually denoted as f1(x) and the marginal of Y is
denoted f2(y).
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Note that in the discrete the concept of conditional distribution is just
an application of the notion of conditional probability:

P (Y = yj X = xi) =
P (X = xi, Y = yj)

P (X = xi)
=
pij
pi•

In the present case it is not so: P (X = x, Y = y)/P (X = x) makes no sense.
So the above definition, in the density case, is NOT a consequence of any-
thing, it is just defined so by agreement. There are strong reasons for such
an agreement, but we shall not go into because we shall not discuss much
about these.
Also for each x for which (x•) 6= 0; the function f(y x) is indeed a density
function: non-negative and

∫
f(y x)dy = 1.

Let us return to the bivariate normal density (♠). By the usual method
of completing squares of the exponent, we see

f(x1•) =
1√

2πσ1

e−x
2
1/2σ

2
1

Thus X1 ∼ N(0, σ2
1). In particular it has mean zero and variance σ2

1. Simi-
larly, you see X2 ∼ N(0, σ2

2); has mean zero and variance σ2
2.

The conditional distribution of X2 given X1 = x1 is

f(x1, x2)

f(x1•)
=

1√
2π
√

(1− ρ2) σ2

e
− 1

2σ22(1−ρ)
2 (x2−ρσ2 x1σ1 )2

which shows that the conditional distribution of X2 given X1 = x1 is Normal
with mean ρσ2

x1
σ1

and variance σ2
2(1−ρ2). In particular, given X1 the variance

of X2 has become smaller by a factor (1− ρ2). Further∫
x1x2f(x1, x2)dx1dx2 =

∫ [∫
x2
f(x1, x2)

f(x1•)
dx2

]
x1f(x1•)dx1

=

∫
ρσ2

x1

σ1

x1f(x1•)dx1 = ρσ2σ1

Hence covariance between X1, X2 is ρσ1σ2. As in the discrete case correlation
is defined as

correlation(X, Y ) = ρXY =
cov(X, Y )

SD(X)SD(Y )

Thus correlation between X1, X2 is ρ.
This justifies the terminology. As a result the matrix Σ is usually called
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covariance matrix, or sometimes, variance-covariance matrix. Same calcula-
tions hold good in higher dimensions. But you need to use matrix algebra.
You would like to know, for example, conditional density of (X1, X2, X3)
given (X4, X5). But all this can be done with clever matrix algebra.
Incidentally what we did above can also be painlessly obtained by taking
square root of Σ and constructing the bivariate normal density from inde-
pendent normals.

exponentials:

Lifetime of bulbs are independent exp(λ). I replaced the bulb immedi-
ately after it died. The second bulb also died now at time t. I forgot the
time when the earlier bulb died (that is when the present bulb was installed).
When did I do this replacement?
Customers enter a bank and their inter arrival times are in independent
exp(λ). Second customer arrived at time t. I wonder: when did the first
customer arrive?
The time between successive accidents (say at Sholinganallur) are indepen-
dent exp(λ). Now at time t second accident occurred and I wonder; when
did the first accident occur?

All these problems are exactly the same. Let X ∼ exp(λ) and Y ∼ exp(λ)
be independent. Find the conditional of X given X + Y = t.
Joint density of (X, Y ) is

f(x, y) = λ2e−λ(x+y) x > 0, y > 0

Let us put U = X and V = X + Y . Then by change of variable formula

g(u, v) = λ2e−v 0 < u < v <∞.

[ Ω = {(x, y) : x > 0, y > 0}
u = ϕ1(x, y) = x; v = ϕ2(x, y) = x+ y
Ω′ = {(u, v) : 0 < u < v <∞}
ψ1(u, v) = u; ψ2(u, v) = v − u
Mod determinant of Jacobian =1.]

Marginal of V is

g(•v) = λ2ve−λv 0 < v <∞.

Conditional density of U given V = t is

g(u, t)

g(•t)
=

1

t
0 < u < t
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Thus if you heard the second beep on Gieger counter at time t, and wonder-
ing when the first occurred, then the answer is: it occurred at a time chosen
uniformly below t.

Suppose X1, X2, . . . are independent exp(λ) random variables – time gaps
between successive beeps of Gieger counter. It makes sense to ask: when did
the n-th beep occur? That is, distribution of X1 + · · · + Xn. Let us denote
its density by fn. Thus

f1(x) = λe−λx x > 0; f2(x) = λ2xe−λx x > 0

You can now repeat earlier argument with X = X1 +X2 whose density is f2

and Y = X3 to get density of X1 + X2 + X3 and so on. By induction, you
see

fn(x) = λn
xn−1

(n− 1)!
e−λx x > 0

You can wonder at time t: How many beeps were there till now? If Nt is
the number of beeps upto time t, then it takes non-negative integer values.
Clearly, Nt = 0 iff (X1 > t). Thus

P (Nt = 0) =

∫ ∞
t

f1(x)dx = e−λt

Nt = 1 iff (X1 ≤ t;X1 +X2 > t). Thus

P (Nt = 1) = P (X1 ≤ t)− P (X1 +X2 ≤ t)

=

∫ t

0

f1(x)dx−
∫ t

0

f2(x)dx = λte−λt

(integrate f2 by parts to end up with f1 integral). In general,

P (Nt = k) = e−λt
(λt)k

k!
k = 0, 1, 2, 3 . . .

We started with a sequence of exponential random variables and ended up
with simpler discrete Poisson variables but uncountably many, one for each
t > 0. There is a nice useful story that can be developed here but that is for
an advanced course.

moments, mgf:
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Just as in the discrete case we can define moments and moment generating
function if they exist. The n-th moment of X with density f is

µn =

∫
xnf(x)dx; defined when

∫
|x|nf(x)dx <∞

When n = 0 we take µ0 = 1.

MX(t) = E(etX) =

∫
etxf(x)dx

M(0) = 1 and M may not exist for other values of t. For example for
X ∼ N(0, 1) usual completing square (in exponent) leads to

MX(t) = et
2/2

As in the discrete case one can get Chernoff bound using mgf.

digression cf:

Since mgf need not always exist one defines characterstic function ϕX(t)
of a random variable with density f as the following complex valued function:

ϕX(t) = E(eitX) = E(cos(tX)) + i E(sin(tX)) t ∈ R

Remember this is defined for t ∈ R and then | cos(tx)| and | sin(tx)| are
bounded, so have expectations. and hence the defining integral always exists.
The change of t to it makes a drastic difference. If X ∼ N(0, 1) one can show

ϕX(t) = e−t
2/2

The observation that both density and characterstic function are (upto con-
stant) same type: e−u

2/2 is very interesting. It appears in both probability,
Mathematics and physics (uncertainty principle).

Properties of Expectation:

In the discrete case we have proved expectation is additive and in the
independent situation, it is multiplicative. It is true in density case also (it
is true in all cases!). Suppose X, Y have joint density f(x, y).

E(X + Y ) =

∫ ∫
(x+ y)f(x, y)dxdy
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=

∫
x(

∫
f(x, y)dy)dx+

∫
y(

∫
f(x, y)dx)dy

=

∫
xf(x•)dx+

∫
yf(•y)dy = E(X) + E(Y )

Remember, this holds without independence.
Now suppose X, Y are independent. Then f(x, y) = f1(x)f2(y) so that

E(XY ) =

∫ ∫
xyf(x, y)dxdy =

∫
(

∫
xf1(x)dx)yf2(y)dy

=

∫
E(X)yf2(y)dy = E(X)E(Y )

This in turn yields that for sum of independent random variables variances
add up. Indeed if E(X) = µ and E(Y ) = ν

E[(X − µ)(Y − ν)] = E(XY )− µν = 0

so that
var(X + Y ) = E[(X + Y − µ− ν)2]

= E[(X − µ)2] + E[(Y − ν)2] + 2E[(X − µ)(Y − ν)]

= var(X) + var(Y )

distribution functions:

Are there two different theories: discrete and density? Are there others?
Is there any common link? Yes. All are parts of one theory. For any random
variable X we define distribution function:

FX(a) = P (X ≤ a) a ∈ R

Basic Theorem:
1. Suppose X is a random variable on a probability space. Then its distri-
bution function FX = F satisfies
(i) monotone: a ≤ b implies F (a) ≤ F (b)
(ii) right-continuous: an ↓ a implies F (an)→ F (a).
(iii) limF (a) = 0 as a→ −∞ and limF (a) = 1 as a→∞.

2. Conversely, given any function F satisfying the above three properties, we
can make a probability space and a random variable X on that space such
that the given F is FX .
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3. Let X ∼ F . Then P (X = a) = F (a) − F (a−) for any a ∈ R. The
quantity F (a)− F (a−) is denoted JF (a), jump of F at a.

4. Let X ∼ F . Then X is discrete random variable iff there is a sequence
of points a1, a2, . . . such that

∑
JF (ai) = 1. In that case the distribution of

X is: value ai with probability JF (ai) for i ≥ 1. Count only those ai with
JF (ai) > 0.

5. Let X ∼ F . Then X has density iff for all a we have

F (a) =

∫ a

−∞
f(x)dx

where f(x) = F ′(x) when F is differentiable at x and zero otherwise. In that
case f is a density for X.

Thus by knowing F you can understand if X is discrete or has density.
If discrete you can get the values and probabilities (using jumps of F ); if it
has density, you can get density (using derivative of F ). Remember, it is not
enough to differentiate F , you must verify that the equation displayed in 5
holds.

Here is an example of F :
F (a) = 0 for a < 1;
F (a) = 1/2 for 1 ≤ a ≤ 4;
F (a) = 1

2
+ a−4

4
for 4 ≤ a ≤ 6

and F (a) = 1 for a ≥ 6.

You can verify this is a distribution function. If X ∼ F , then F is not
discrete random variable because sum of jumps is 1/2 and not 1. X does not
have a density, because F is not continuous.

Digression:
We discussed Cantor distribution function F which is constant in each deleted
interval, F (0) = 0 and F (1) = 1 and F is continuous. If you followed the
prescription in 5 above, you get f ≡ 0 and the displayed equation fails. Thus
this is an continuous distribution function with no density.

CLT:
Recall that a sequence of random variables (Xn, n ≥ 1) is independent if for
each n the variables X1, X2, . . . , Xn are independent. A sequence of random
variables (Xn, n ≥ 1) is identically distributed if they all have the same dis-
tribution. A sequence is iid – independent identically distributed – if both
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hold.
They may have density or they may all be discrete or neither. They have the
same distribution function. In what follows, you keep in mind only the first
two cases because we have not defined means etc in the general case.

Here is Central Limit Theorem.
Theorem:

Suppose X1, X2, . . . is a sequence of iid random variables with mean µ and
variance σ2 > 0. Then for any b ∈ R

P (
X1 + · · ·+Xn − nµ

σ
√
n

≤ b)→
∫ b

−∞

1√
2π
e−x

2/2dx

For any a < b ∈ R

P (a <
X1 + · · ·+Xn − nµ

σ
√
n

< b)→
∫ b

a

1√
2π
e−x

2/2dx

You must appreciate that no serious assumption is made about the distri-
bution except that the mean and variance are finite. You should understand
that the quantity Zn = (

∑
Xi − nµ)/σ

√
n is simply the sum standardized;

which means make mean zero and variance one. Since E(Xi) = µ we see
E(
∑
Xi) = nµ so that E(

∑
Xi − nµ) = 0. By independence variance adds

up so that var(
∑
Xi) = nσ2 and var(

∑
Xi − nµ) = nσ2. Thus E(Zn) = 0

and var(Zn) = 1

There are three basic peaks in elementary probability. First is the WLLN
and SLLN. They say that partial averages approach the expectation. The
difference between the two versions is in the mode of approach (as explained
in the coin tossing). We have proved and seen uses of WLLN. We do not
see SLLN in elementary course (because, the probability space is generally
unseen, we see only random variables). But you have seen one example of
SLLN. when you pick a point at random from the unit interval and look at
its binary digits we showed that they are iid taking values 0/1 with equal
probability so that expectation equals 1/2. We have shown the averages of
the digits (which is proportion of ones in the expansion) converges to 1/2 for
almost all points of the unit interval. this is an instance of SLLN.

The second peak is the CLT. The third peak is LIL, Law of iterated
logarithm which tells you ‘exact magnitude of fluctuations (from expectation)
in the averages’. This is rather complicated.

Returning to CLT, what it says is that the ‘normalized partial sum’ is
approximately standard normal. This is very useful theorem, Firstly, as
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explained in the discrete case (with coin tossing) this helps in calculating
probabilities – approximating probabilities. This also appears in various
statistical techniques like testing. When you are measuring something there
are measurement errors. Errors occur due to several reasons and each reason
causing a small error. You assume errors are not just one sided and so have
mean zero. You can rewrite Zn as

Zn =
X1

σ
√
n

+
X2

σ
√
n

+ · · ·+ Xn

σ
√
n

You can think of Zn as a large sum of small ‘errors’. In model building,
you can assume that error, which is sum of a large number of small errors
caused due to diverse reasons, is approximately normal. Thus this helps
justify certain assumptions in model building.
We leave this topic here.
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BVR Probability 2023 week 14

Before going to a new idea (the last we discuss in our course), here are
some diverse comments. The first three are about CLT, We have not proved
it because it is an advanced topic. But Why should you believe it? Can we
take a peep?

1. CLT To start with Suppose (Xn) are iid taking values ±1 with equal
probability. Thus µ = 0 and σ2 = 1. Let

Zn =
X1 + · · ·Xn√

n
=
X1√
n

+
X2√
n

+ · · ·+ Xn√
n

Now X1/
√
n has mgf

1

2
[et/
√
n + e−t/

√
n] = [1 +

t2

2n
+ o(1/n)]

where

o(1/n) = [
t4

4!n2
+

t6

4!n2
+ · · · ]

which when multiplied by n goes to zero (as n→∞). thus mgf of Zn is

Mn(t) = [1 +
t2

2n
+ o(1/n)]n → et

2/2

mgf of the standard normal.

2 CLT: Suppose (Xn) are iid taking values 0, 1 with probabilities q = 1−p
and p respectively. Then µ = p and σ2 = pq. Proceeding as above

Zn =
X1 + · · ·Xn − np√

npq
=
X1 − p√
npq

+
X2 − p√
npq

+ · · ·+ Xn − p√
npq

mgf of (X1 − p)/
√
npq equals

qe−pt/
√
npq + peqt/

√
npq = q exp{−t

√
p/q√
n
}+ p exp{t

√
q/p√
n
}

= q[1− t
√
p/q√
n

+ t2
p/q

2n
− t3

(
√
p/q)3

3!n
√
n

+ · · · ]

+p[1 + t

√
q/p√
n

+ t2
q/p

2n
+ t3

(
√
q/p)3

3!n
√
n

+ · · · ]
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= [1 +
t2

2n
+ o(1/n)]

Thus mgf of Zn equals

Mn(t) = [1 +
t2

2n
+ o(1/n)]n → et

2/2

mgf of the standard normal.

3 CLT: Suppose (Xn) are iid uniform (−1, 1) variables so that µ = 0 and
σ2 = 1/3.

Zn =
X1 + · · ·Xn√

n/3
=

X1√
n/3

+
X2√
n/3

+ · · ·+ Xn√
n/3

mgf of X1/
√
n/3 equals

1

2

∫ 1

−1

etx/
√
n/3 dx =

1

2

et/
√
n/3 − e−t/

√
n/3

t/
√
n/3

denoting t/
√
n/3 by u

=
eu − e−u

2u
= [u+

u3

3!
+
u5

5!
+ · · · ]/u

= 1 +
u2

3!
+
u4

5!
+ · · ·

using u2 = 3t2/n and u4 = 32t2/n2 etc

= 1 +
t2

2n
+

32t2

5!n2
+ · · · = [1 +

t2

2n
+ o(1/n)]

Thus mgf of Zn is

Mn(t) = [1 +
t2

2n
+ o(1/n)]n → et

2/2

In each case we are calculating mgf explicitly. Firstly the mgf may not exist;
secondly we may not be able to explicitly evaluate. One uses characterstic
function ϕX which always exists. Moreover we dio not need all of the cf;
only Taylor expansion up to second order and an ‘estimate’ of the error with
o(1/n) term. Thus you need not calculate the cf in full.
One needs a theorem that normal distribution is identified by its cf. This
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shows the convergence of cf of your mormalized partial sum to the cf of stan-
dard normal. To conclude CLT, you need to know that this convergence does
imply convergence of P (a < Zn < b) as stated. These involve work and are
advanced topics.

4. SLLN:
As a consequence of mgf and Chebyshev inequality we have derived the

very useful Chernoff bound: Let (Xn) be iid random variables taking values
±1 with equal probability. Let

Sn = X1 +X2 + · · ·+Xn.

Then

P

(
|Sn
n
| ≥ a

)
≤ 2e−na

2/2 (♠)

Having come this far, (by the way, Chernoff bound is a bread and butter tool
in CS too) It will be a shame if I did not tell you SLLN:

Sn
n
→ 0 for almost all sample points. (♣)

Here is the catch: I said that we never ask where our variables are defined.
We calculate ALL needed probabilities using the densities of random vari-
ables (that is why densities are there, as far as our course is concerned). But
to prove (♣) we need to pick up all sample points from our space (which
we do not know) for which the above convergence fails and show that this
event has probability zero, so that the complement event has probability one.

Luckily two mathematicians devised a link for this which you can imple-
ment without looking at your space!

Borel-Cantelli Lemma: Suppose (An) are events in a space. Suppose∑
P (An) < ∞. Define an event B As follows: all points which belong to

infinitely many of the An. Then P (B) = 0.

Proof of this is so trivial you will laugh. If a point is in infinitely many
An, then whatever m you take it must be in ∪{An : n ≥ m}. In other words

B ⊂ ∪{An : n ≥ m} ∀m

But

P [∪{An : n ≥ m}] ≤
∞∑
n=m

P (An) (see below (*))
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So

P (B) ≤ P [∪{An : n ≥ m}] ≤
∞∑
n=m

P (An) ∀m

But
∑
P (An) finite tells that the above tail sum can be made as small as we

please. Thus
P (B) = 0

[(∗): We know that For countably many disjoint events P (∪Ci) =
∑
P (Ci).

We know C ⊂ D implies P (C) ≤ P (D).
If you take events Am, Am+1, Am+2, . . ., then

Cm = Am
Cm+1 = Am+1 \ Am
Cm+2 = Am+2 \ (Am ∪ Am+1), . . .
are disjoint and

Ci ⊂ Ai; ∪i≥mCi = ∪i≥mAi; Ci disjoint

so that
P (∪i≥mAi) = P (∪i≥mCi) =

∑
i≥m

P (Ci) ≤
∑
i≥m

P (Ai)

as required]

Let us return to (♠). For every number a > 0 we know∑
e−na

2/2 <∞

Take a = 1/2 and An be the event
(
|Sn
n
| ≥ 1/2

)
and B1 be those points

which are in infinitely many of these An. Then P (B1) = 0 and for each point
not in B1 we have |Sn/n| < 1/2 after some stage (depending on the point).

Take a = 1/22 and An be the event
(
|Sn
n
| ≥ 1/22

)
and B2 be those points

which are in infinitely many of these An. Then P (B2) = 0 and for each point
not in B2 we have |Sn/n| < 1/22 after some stage (depending on the point) .

By taking a = 1/2k you get a set Bk such that P (Bk) = 0 and for each
point not in Bk we have |Sn/n| < 1/2k after some stage.

Now let B = ∪Bk. Then P (B) = 0 and for points not in B = ∪Bk:
whatever be k; we have |Sn/n| < 1/2k after some stage. In other words for
points not in B, we have |Sn/n| → 0.
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Observe that the above shows that for almost all points picked at random
from (0, 1) the proportion of each binary digit is 1/2. If, to change notation,
Yn is the n-th binary digit then apply the above to Xn = 2Yn − 1.

5. Bose-Einstein revisited:
Let us return to distributing n balls again into boxes through an inter-

esting experiment: by Tossing a random coin/dice.
I pick a number p at random from (0, 1). This is done once and for all. You
can also say it as follows: from all coins pick one at random — that is, for
each 0 < p < 1 there is one coin with chance of heads p and we pick one at
random.
For each of n balls, I toss the coin and put that ball in box 1 or 2 according
as Heads or Tails. Tell me the number X of balls in box 1.

Clearly the event (X = k) occurs iff you get k heads in n tosses. It is(
n
k

)
pk(1 − p)n−k. But unfortunately this is conditional probability, If you

knew that the coin picked has chance of heads p. But we are not looking for
conditional probability.

In the discrete case if we have two random variables X, Y and if we knew
P (X = x Y = yi) then we calculated

P (X = x) =
∑

P (X = x Y = yi)P (Y = yi) (♠)

Even in the case when we have joint density f(x, y) for (X, Y ) we did the
same: Marginal density of y is f(•y) and the conditional density of X given
Y = y is f(x, y)/f(•y) so that conditional probability is

P (a < X < b Y = y) =

∫ b

a

f(x, y)

f(•y)
dx

∫
P (a < X < b Y = y)f(•y)dy =

∫
y

∫ b

x=a

f(x, y)

f(•y)
dxf(•y)dy

=

∫ b

x=a

∫
y

f(x, y)

f(•y)
f(•)dydx =

∫ b

x=a

f(x•)dx

= P (a < X < b)

Thus we again have

P (a < X < b) =

∫
P (a < X < b Y = y)f(•y)dy (♠)

with sum replaced by integral and conditional probabilities multiplied by the
density.
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Unfortunately, in the present situation we have X is discrete and Y takes
values in (0, 1) and has uniform density. We make the same definition.

Definition: If X, Y1, . . . , Yr are random variables and X is discrete taking
values x1, x2, . . . and Y = (Y1, . . . , Yr) has density f(y1, . . . , yr) and if we know
P (X = xi Y = y1, . . . , Y = yr) then the unconditional probabilities for X are
given by

P (X = xi) =∫
· · ·
∫
P (X = xi Y = y1, . . . , Y = yr)f(y1, . . . , yr)dy1 · · · dyr (♠)

Incidentally all these (♠) are consequences of just the same one definition,
but we need to use distribution functions — understandable, because we have
discrete and continuous random variables all mixed up in a single context.
In our course we had discrete random variables and then random variables
with densities. But in practice you have both at the same time on stage!
We saw that when we started with a sequence of exponential variables and
ended up with a huge collection of Poisson variables. The present problem
is another instance.

Returning to our problem

P (X = k) =

∫ 1

0

(
n

k

)
pk(1− p)n−kdp =

1

n+ 1

In other words, as if the n balls are put in two boxes and obey B-E statistics.

Let us now consider the same problem of distributing n balls into three
boxes as follows: Pick a three faced die at random and use it distribute the
balls. What does this mean? Let

∆ = {(p1, p2) : 0 < p1, p2, 1− p1 − p2 < 1}

Pick a point at random from this set and take a die with chance of faces
(p1, p2, 1− p1 − p2). Use it. We would like to know P (k1, k2, k3), probability
of the event that there are ki balls in box i. We assume that

∑
ki = n. We

know (multinomial probabilities, Exercise 87?)

P{(k1, k2.k3) (p1, p2)} =

(
n

k1, k2, k3

)
pk11 p

k2
2 (1− p1 − p2)k3 .

Here (
n

k1, k2, k3

)
=

n!

k1! k2! k3!
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Thus

P (k1, k2, k3) =

∫∫
∆

P{(k1, k2.k3) (p1, p2)}2 dp1 dp2

Here we have used the fact that the set ∆ has area 1/2 (the region is a
triangle) and so density equals 2 on the set and zero outside the set. After
simplification we get

P (k1, k2, k3) =
2

(n+ 1)(n+ 2)
=

1(
n+2

2

)
Again as if the n balls being placed in two boxes obey B-E statistics.

In general if n particles distribute themselves into r energy levels as fol-
lows: they pick a r-faced die at random and obey what the die dictates. More
precisely, let

∆ = {(p1, . . . , pr−1) : 0 < p1, . . . , pr−1, 1−
∑

pi < 1}

subset of (r − 1) dimensional space. We pick a point at random from this
set. Then

P (X = (k1, . . . , kr) p) =
n!

k1! . . . kr!
pk11 . . . pkrr

where pr is abbreviation for 1 − p1 − p2 − · · · pr−1. Finally letting v denote
the volume of ∆;

P (X = (k1, . . . , kr)) =∫
· · ·
∫

∆

n!

k1! . . . kr!
pk11 . . . pkrr

1

v
dp1 . . . dpr−1 =

1(
n+r−1
r−1

)
Again the familiar expression.
Thus God does not play dice but BE statistics do. This interpretation is due
to the statistician Sudhakar Kunte, though many physicists have discovered
it independently.

We discussed a little about Entropy and Information, Since it is just for
fun and not part of course we shall not record.

FINAL EXAM: 26th April Wednesday.
DETAILS are already in Exercise set.
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