Introduction to Programming: Assignment 2

Due: September 23, 2022. 11.59 pm

Instructions:

Submit your solution in a single file named cmiemailid.hs on Moodle. For example, if I were
to submit a solution, the file would be called spsuresh.hs. You may define auxiliary functions
in the same file, but the solutions should have the function names specified by the problems.

I. Asegment of alist xs of length n is any sublist of the form xs[i--- (j—1)], witho < i < j < n.
(In case i = j, the segment is the empty list.)

Write a program
segments :: [a]l — [[all

that produces all the segments in a given list. (The order in which the segments are to be
listed is indicated by the sample cases below. Notice that the empty list is included only
once, but other lists can repeat, as the third example below shows:)

Sample cases:

[[1]
[[o],[1]
[[e],[0,1],[0,1,2],[0,1,2,3],
[11,[1,2]1,[1,2,3],
[21,[2,3],
[31,
[1]
segments [0,1,0,1,0,1,2]
= [[e],[0,1],[0,1,0],[0,1,0,1],[0,1,0,1,0],
[0,1,0,1,0,1],[0,1,0,1,0,1,2],
[1],[1,0],[2,0,2]1,[2,0,1,0],[1,0,1,0,1],
[1,0,1,0,1,2],
[el,[0,1],[0,1,0],[0,1,0,1],[0,1,0,1,2],
[11,[2,0]1,[2,0,11,[1,0,1,2],
[el,[0,1],[0,1,2],
[1],[1,2],
[2],
[1]

segments []
segments [0]
segments [0..3]



2. An uprun of a list xs is a maximal nonempty segment that is sorted in ascending order (i.e.
itis a segment xs[i - - - (j—1)] such that xs[k] < xs[k + 1] fori < k < j—1,and xs[i —1] > xs[{]
and xs[j — 1] > xs[j].

Write a program
upRuns :: Ord a = [a] — [[a]l

that produces a list of all upruns in the input list.

Sample cases:

[]
[[0]]

upRuns []
upRuns [0]
upRuns [0.. 4]

[[0,1,2,3,4]]
upRuns [0,1,2,3,5,4]
[[0,1,2,3,5],[4]]
,1,0,1]
[[0,1],[0,1],[0,1]]
,3,0,1,0,1,2,3,4]
[[0,1,2,3],[0,1],[0,1,2,3,4]]
upRuns [0,1,2,3,0,0,0,1,1,0,1,2,3,4]
[[0,1,2,3],[0,0,0,1,1],[0,1,2,3,4]]
upRuns [5,4..0]

= [[51,[41,[31,[21,[1]1,[0]]

S

upRuns [0,1,

N

upRuns [0,1,

3. This problem is about the word game Stackle, available at https://www.stackle. fun.
In this game, you are given two 5-letter words at the start. The aim is to build as long a
stack of words as possible. The stack is grown by adhering to these rules:

(a) Each word has 5 letters.
(b) No letter repeats in any word.

(c) To go from one word to the next, one eliminates a letter and introduces a new letter

(and perhaps jumbles the order).

(d) Eliminated letters cannot be used again.


https://www.stackle.fun

(e) Each word is a valid word in the Stackle dictionary. (We do not have access to the
Stackle dictionary, but we have an approximation in the file Dict.hs.)

Note that since we start with a 5-letter word, and in each move we eliminate a letter, the
stack can have a maximum length of 22.

There is a further availability constraint. There are three lists of letters given, call them 11,
12 and 13. Each list can possibly be empty, and 11 and 12 usually contain at most 4 letters,
and 13 has at most 1 letter, and the lists are mutually disjoint. Letters in 11 can appear
only at the tenth word of the stack or later, letters in 12 can appear only at the eighteenth
word of the stack or later, and letters in 13 can appear only at the twenty second word.

We define the following two type synonyms (a simpler name for an existing type, to improve

readability):
type Game = (String, String, ([Char], [Char], [Charl]))
type Solution = [String]
Write a program
checkStack :: Game — Solution — Bool

such that checkStack gm solreturns True if sol is a valid stack of words according to the
above rules, and returns False otherwise.

Sample cases:

gml, gm2, gm3 :: Game
gml = ("round", "mound", (['a'l, ['i','t'], ['k']))
gm2 = ("bloke", "block", ([1, [1, [1))

gm3 = (Ilﬂunkll’ "funkS", ([Ial]' [IgI'IrI’IXI’IZI]’ []))
soll, sol2, sol3, nosolla, nosolilb, nosollc, nosolld :: Solution
soll = [

"round", "mound", "found", "wound", "hound", "dough"
, "cough", "chugs", "cushy", "saucy", "quays", "squab"
, "abuse", "pause", "japes", "paxes", "pales", "lazes"
, "tales", "tiles", "lives", "likes"]
sol2 = [
"bloke", "block", "black", "slack", "racks", "czars"

, "chars", "scarf", "cards", "drams", "yards", "daisy"



, "gqadis", "wadis", "divas", "staid", "taxis", "pitas"
, "satin", "aunts", "gaunt", "jaunt"]
sol3 = [
"flunk", "funks", "bunks", "hunks", "junks", "stunk"
, "tunes", "quest", "suety", "cutes", "mutes", "mites"
, "tomes", "stove", "stave", "waste", "paste", "gates"
, "zetas", "taxes", "dates", "rates"]
nosolla = ["round", "found", "gound"]
"gound" is not a valid word in the dictionary
nosollb = ["round", "crown"
-- "We are eliminating both 'u' and 'd’
nosollic = ["round", "hound", "dough", "tough"]
-—- 't' is used before the eighteenth word

nosolld = ["round", "hound", "dough", "cough", "couch"]
-- 'c' is repeated twice in the last word
nosolle = ["mound", "round", "found", "wound"]

-- First two words must exactly match the
-- starting words given in the game
-- in the correct order.
partsoll = ["round", "mound", "hound", "dough", cough"]
-- It is okay to stop short.
-- This is a valid partial solution.

checkStack gml soll = True
checkStack gml partsoll = True
checkStack gml nosolla = False
checkStack gml nosolilb = False
checkStack gml nosolilc = False
checkStack gml nosolild = False
checkStack gml nosolile = False
checkStack gm2 sol2 = True
checkStack gm3 sol3 = True

4. 'This problem is related to rational numbers and their continued fraction representation.

Rational numbers are represented using the data type Rational in Haskell. The ratio
p/q is represented using the % operator defined in Data.Ratio. Acquaint yourself with
other functions defined in Data.Ratio, like numerator and denominator, and the function

4



fromIntegral. (Note: numerator rat can be positive or negative, but denominator rat
is always positive.)

A finite continued fraction is any expression of the form

where a, is an integer and each a; is a positive integer, for { > 1. This is succinctly rep-
resented as the list [a ;s a,, a,,...,a,]. (Note the semicolon after the first entry.) A finite
continued fraction can be calculated to a rational of the form % On the other hand, every

rational number can be expressed as a finite continued fraction. For example, the rational
number % can be rendered as a continued fraction using the following steps:

2 II
2_ . u
31 31
. I
_I+3_I
II
I

242
II

=1+

2+H

I+

I
4+~
2

Thus one continued fraction corresponding to £ is [1;2,1, 4, 2]. A continued fraction cor-
31

responding to _2_1 is[—2;1,3, 5). The continued fraction representation is not unique. For
instance, both [0;1,1,1,1] and [0; 1, 1, 2] represent i



Define a function computeRat :: [Integer] — Rational that takes a nonempty list of
integers, such that all but the first element is positive, and returns the rational number
corresponding to it.

Define a function cf :: Rational — [Integer] that takes a rational number as input
and returns a continued fraction corresponding to it.

Sample cases: (Since there are multiple answers possible for cf, the cases below are only in-
dicative. We will check the correctness of your solution by actually computing the inverse

and checking.)
cf (26%21) = [1,4,5]
cf (-26%21) = [-2,1,3,5]

cf (42%31) [1,2,1,4,2]

cf (-42%31) [-2,1,1,1,4,2]
computeRat [1,4,5] = 26%21
computeRat [-1,1,1,1,1] = (-2)%5

5. Just like finite continued fractions represent rationals, infinite continued fractions of the

form
I
a, + I
a, + ——
a, +---
o . I+.4/5 .
correspond to irrational numbers. For example, the golden ratio ¢ = ——= can be writ-
2
ten as’
I
I+ I
I+ I
I+
I+...

This is represented more succinctlyas[1; 1,1, 1,1, . . .]. If we truncate this list at some finite
point, we get a finite rational approximation for ¢.

Assume the following Haskell definitions:

phi :: Double
phi = (1 + sqrt 5) / 2

computeFrac :: Rational — Double
computeFrac x = fromIntegral (numerator x)

!'This can be verified by denoting the continued fraction as x and observing that x = 1 + =, i.e. x> = x + 1, and
X

solving for x (and taking the positive solution).



/ fromIntegral (denominator x)

Write a function approxGR :: Double — Rational which returns a close rational ap-
proximation for the golden ratio, i.e. on input epsilon it returns some r :: Rational
such that abs (phi - computeFrac r) < epsilon.

Note: Do not use the approxRatio function from Data.Ratio.

Sample cases: (Since there are multiple answers possible, the cases below are only indica-
tive. We will check the correctness of your solution by actually calculating if the error is
less than epsilon.)

approxGR 0.0001
approxGR 0.0000000000001

144 % 89
3524578 % 2178309



