CHENNAI MATHEMATICAL INSTITUTE

Midsemester Exam - TFML

Date: Oct 6, 2024

- (3 marks) Using the concavity of the $\ln(x)$ function, show that $\ln(n!) \leq \int_1^n \ln(x) dx + \ln(n)/2$. Use this to give an upper bound on n!.
 - (2 marks) Also prove a reasonable lower bound. '
- (2) (5 marks) We are learning a concept class from samples which are labelled 0,1. We believe there are bunch of d data features and if any one of them is true, the data point should be classified as 1. Suppose the data is generated from a concept h^* , which is a disjunction of these features. Design a learning algorithm whose empirical risk is zero. For given ϵ, δ , how many samples will you need? Assume there are d features.
- (3) (4 marks) Let $\mathcal{H}_1, \mathcal{H}_2$ be two hypothesis classes each with VC dimension d. Suppose we take the union of these hypothesis classes as our new hypothesis class \mathcal{H} . Show that the size of the largest set that can be shattered by \mathcal{H} is at most 2d+1
- (4) (4 marks) Given a hypothesis class \mathcal{H} , we produce the hypothesis class \mathcal{H}' as follows. The hypothesis in \mathcal{H}' are tuples $(h_1, h_2, \ldots, h_{2k+1})$ with $h_i \in \mathcal{H}$. On the given data set assume the classification by $h' := (h_1, \ldots, h_{2k+1}) \in \mathcal{H}'$ is h'(x) = 1 if for majority of the i's, $h_i(x) = 1$, it is 0 otherwise.

Assuming the VC dimension of \mathcal{H} is d what is the VC dimension of \mathcal{H}' ?

- (5) (4 marks) Let $\ell_1, \ell_2, \ldots, \ell_k$ be non negative integers such that $\sum_i 3^{-\ell_i} \le 1$. Show that the following procedure constructs a prefix free ternary code \mathcal{C} with k codewords of lengths ℓ_i , $1 \le i \le k$
 - o W.l.o.g, $\ell_1 \leq \ell_2 \leq \cdots \leq \ell k$. On a complete ternary tree of depth ℓ_k , take a node at depth ℓ_1 . The path from root to node gives a codeword of length ℓ_1 which we add to \mathcal{C} . Now remove all nodes below that and proceed to ℓ_2 and continue the same.
- (6) (1 mark) Recall that in the minimum description length paradigm, given a sample S, we return a hypothesis h_S satisfying the conditions given below.

$$h \in argmin_{h \in \mathcal{H}}[L_S(h) + \sqrt{\frac{|h| + \ln(2/\delta)}{2m}}]$$

Here m is the number of samples and |h| is the description length of h - what is the bias variance tradeoff in this paradigm as compared to ERM?

(2 marks) Now assume the data comes from a distribution \mathcal{D} . Also suppose for a constant B we consider hypothesis class \mathcal{H}_B containing

1

2

only hypothesis with description length at most B. Set h_B^* to be a hypothesis in \mathcal{H}_B which minimizes total risk. Compute a bound on $L_{\mathcal{D}}(h_S) - L_{\mathcal{D}}(h_B^*)$.

(1 mark) What should be the sample complexity if we wish to to output a hypothesis which is at most ϵ -away from $L_{\mathcal{D}}(h_B^*)$ with probability $1 - \delta$?

(7) (2 marks) Compute the distance of a point x to the hyperplane $w^T x + b = 0$, in terms of quantities involving w, x, b. (2 marks) In the linear separable case, we wish to find a hyperplane

w and b which maximizes the minimum of the distances of the points x_i to the hyperplane $w^t x + b = 0$. Show that the following is a valid formulation to find such a separating hyperplane:

$$min_w \frac{1}{2} ||w||^2$$
, such that $\forall i, y_i(w^t x_i + b) \ge 1$