
Assignment 2 - TFML
Nirjhar Nath

nirjhar@cmi.ac.in
BMC202239

1

Solution 1:
We will start by proving the following claim:

Claim: For any c ∈ R,

|c| = min
a≥0

a s.t. c ≤ a and c ≥ −a.

Proof: For any c ∈ R, we have the following two cases:
Case 1: Suppose c ≥ 0. Then, we have |c| = c. Consider the smallest non-negative
a such that c ≤ a and c ≥ −a. Since c ≥ 0, it satisfies the following inequality:

−c ≤ 0 ≤ c ≤ a.

The minimum value of a such that this inequality holds is c, i.e.,

c = |c| = min
a≥0

a s.t. c ≤ a and c ≥ −a.

Case 2: Suppose c < 0. Then, we have |c| = −c. Consider the smallest non-
negative a such that c ≤ a and c ≥ −a. Since c < 0, it satisfies the following
inequality:

c < 0 < −c ≤ a.

The minimum value of a such that this inequality holds is −c, i.e.,

−c = |c| = min
a≥0

a s.t. c ≤ a and c ≥ −a.

This proves our claim.

Now we can define a vector of auxiliary variables s = (s1, . . . , sm), where

|⟨w, xi⟩ − yi| = min
si≥0

si s.t. ⟨w, xi⟩ − yi ≤ si and ⟨w, xi⟩ − yi ≥ −si.

We want to minimize ∑m
i=1 such that ∀ i ∈ [m],

wT xi − si ≤ yi and − wT xi − si ≤ −yi.

We can translate the above into matrix form as follows: Let A be the 2m × (m + d)
matrix, composed as follows:

A =
[

X −Im

−X −Im

]
where X is the matrix whose rows are the feature vectors xi, and Im is the m × m

identity matrix. The vector of variables v ∈ Rm+d combines the weight vector w and the
auxiliary variables s:

v = (w1, . . . , wd, s1, . . . , sm)T

The constraint vector b ∈ R2m is formed by concatenating the target values yi and
their negatives:

b = (y1, . . . , ym, −y1, . . . , −ym)T

2

Finally, the cost vector c ∈ Rd+m that corresponds to the objective function is:

c = (0d; 1m)

where 0d is a zero vector of length d (the number of features) and 1m is a vector of
ones of length m (the number of observations).

The resulting linear programming problem can thus be expressed as:

min cT v s.t. Av ≤ b.

■

3

Solution 2:
Consider positive examples of the form (α, β, 1) where α2 +β2 +1 ≤ R2. We note that the
target vector w∗ = (0, 0, 1) satisfies the condition y(w∗ · x) ≥ 1 for all such pairs (x, y).
Our goal is to construct a sequence of R2 examples on which the Perceptron algorithm
makes R2 mistakes.

To build this sequence, we start with the example (α1, 0, 1) where α1 =
√

R2 − 1. For
each round t, we select a new example so that the following two conditions are met:

α2 + β2 + 1 = R2 and w(t) · (α, β, 1) = 0.

If these two conditions hold, the Perceptron will continue to make mistakes. We will
show that, as long as t ≤ R2, it is possible to satisfy both conditions.

Using induction, assume that w(t−1) = (a, b, t − 1) for some scalars a and b. Note that
∥w(t−1)∥2 = t − 1, which follows from the Perceptron’s mistake bound proof, where we
encounter inequalities that hold as equalities in this case. Thus, we have α2+β2+(t−1)2 =
(t − 1)R2.

Without loss of generality, we can rotate w(t−1) around the z-axis, transforming it to
the form (a, 0, t − 1) with a =

√
(t − 1)R2 − (t − 1)2. We then choose

α = t − 1
a

.

For any value of β,
(⟨a, 0, t − 1⟩, (α, β, 1)) = 0,

which meets the second condition.
To ensure that the first condition holds, we need α2 + 1 ≤ R2. If this is true, we can

select β such that β2 = R2 − α2 − 1. Indeed, we verify as follows:

α2 + 1 = (t − 1)2

a2 + 1 = (t − 1)2

(t − 1)R2 − (t − 1)2 + 1 = (t − 1)R2

(t − 1)R2 − (t − 1)2 ≤ R2,

where this last inequality holds when R2 ≥ t.
Thus, this construction allows us to generate a sequence of examples on which the

Perceptron algorithm makes R2 mistakes, reaching the theoretical upper bound. ■

4

Solution 3:
Given the sequence of hypothesis classes H1, H2, . . . for binary classification, where the
learning algorithm implements the ERM rule, we need to prove that an ERM hypothesis
can be found in the unrealizable case, where each class Hn is defined by at most 2n
examples, and can be done so in O(nmO(n)) time.

First, consider a sample S of size m. We can partition the hypotheses in Hn into
equivalence classes where any two hypotheses within the same class have identical behav-
ior with respect to S. The number of such equivalence classes is bounded by the binomial
coefficient

(
m
n

)
, which indicates the number of ways to choose n elements from a set of

m.
We have, (

m

n

)
= m!

n!(m − n)!
Approximating this for large m and small n, we can simplify this as:(

m

n

)
≤ mn

n!

Given that n! grows super-exponentially, for practical computational purposes, we
can approximate it further as: (

m

n

)
≤ mn

Thus,
(

m
n

)
falls within O(mn), which suits the polynomial bound of O(mO(n)).

Since each hypothesis in an equivalence class behaves identically with respect to S,
only one representative from each class needs to be evaluated for ERM. The empirical
risk for each representative can be computed in O(mn) time. Calculating this across
potentially mn equivalence classes yields a total computational time of:

O(mn × mn) = O(mn+1n)

Considering n as a constant relative to m and the polynomial growth of mn, the
complexity is simplified to O(nmO(n)).

Therefore, it is computationally feasible to find an ERM hypothesis in the unrealizable
case for the class Hn, meeting the time complexity requirement of O(nmO(n)), hence
completing the proof. ■

5

Solution 4:
1. Given that A is a non-uniform learner for a class H. For each n ∈ N, we define

HA
n = {h ∈ H : mNUL(0.1, 0.1, h) ≤ n}. We have, for any distribution D, with

probability at least 0.9 = 1 − 0.1 over the choice of S ∼ Dm, it holds that

LD(A(S)) ≤ LD(h) + 0.1

for every h ∈ Hn m such that m ≥ mNUL
H (0.1, 0.1, h) ≥ n. Also, since 0.1 < 1

7 and
0.1 < 1

8 , we have

LD(A(S)) ≤ argminh∈HA
n
(LD(h) + 0.1) < argminh∈HA

n

(
LD(h) + 1

8

)
.

If D satisfies the realizability assumption, then with probability 1 − 1
7 , we get

LD(A(S)) < 1
8 . Therefore, each class Hn has finite VC dimension, because if not,

then by the No Free Lunch theorem, we have, LD(A(S)) ≥ 1
8 with probability ≥ 1

7 ,
which is a contradiction.

2. Given that H is nonuniformly learnable and HA
n has finite VC dimension. By

Theorem 7.2 and 7.3, it can be expressed as a countable union of agnostic PAC
learnable classes H = ⋃

n∈N HA
n , each having finite VC-dimension.

3. Assume, for the sake of contradiction, that VCdim(Hn) < ∞ for every n. We next
define a sequence of finite subsets (Kn)n∈N of K in a recursive manner. Let K1 ⊆ K
be a set of size VCdim(H1) + 1. Suppose that K1, . . . , Kr−1 are chosen. Since K is
infinite, we can pick Kr ⊆ K \ ⋃r−1

i=1 Ki such that |Kr| = VCdim(Hr) + 1.
For each n ∈ N, there exists a function fn : Kn → {0, 1} such that fn /∈ Hn. Since
K is shattered, we can pick h ∈ H which agrees with each fn on Kn. It follows that
for every n, h ̸∈ Hn, contradicting our earlier assumption. Thus, there exists some
n for which VCdim(Hn) = ∞.

4. Let χ = R. For each n ∈ N, consider Hn as the class composed of unions of up to
n intervals. Specifically, define

H = {ha1,b1,...,an,bn : ∀i ∈ [n], ai ≤ bi},

where
ha1,b1,...,an,bn(x) =

n∑
i=1

1[ai,bi](x).

The VC dimension of Hn can be shown to be 2n: If we consider points x1 < · · · <
x2n, each i-th interval can be used to shatter the consecutive pairs {x2i−1, x2i}. For
points x1 < · · · < x2n+1, the alternating label pattern (1, −1, . . . , 1, −1) cannot be
achieved with just n intervals, indicating a limitation. This analysis establishes
that the overall VC-dimension of H = ⋃

n∈N Hn is infinite. As a result, H is not
PAC learnable, although it is non-uniformly learnable.

5. Let H2 be the class of all functions from the interval [0, 1] to {0, 1}. The set
[0, 1] is shattered by H2, indicating that H2 is capable of classifying every subset
of [0, 1], which implies that VCdim(H2) = ∞. Thus, H2 is not nonuniformly
learnable because, as shown in part (ii), if a class can be expressed as a countable

6

union of classes each having finite VC dimensions, then it is nonuniformly learnable.
However, since H2 itself shatters an uncountable set with an infinite VC dimension,
it cannot be described in such a way. Therefore, H2 is not nonuniformly learnable.

■

7

