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Solution 1:
We have, ∫ ∞

0
P(X ≥ ν)dν =

∫ ∞

0

∫ ∞

v
f(x)dxdv

=
∫ ∞

0

∫ x

0
f(x)dvdx

=
∫ ∞

0
f(x) · (x− 0)dx

=
∫ ∞

0
xf(x)dx

= E[X].

■

2



Solution 2:
We define the function f(α) as:

f(α) = KL+((1 − α)q + αp∥q).

Clearly,
f(1) = KL+(p∥q), f(0) = KL+(q∥q) = 0.

Next, we compute the first and second derivatives of f(α). The first derivative is:

f ′(α) = (p− q)
(

ln (p− q)α + q

q
− ln (1 − q) − (p− q)α

1 − q

)
.

Evaluating at α = 0 gives:
f ′(0) = 0.

The second derivative is:

f ′′(α) = (p− q)2

(q + (p− q)α)((1 − q) − (p− q)α) .

At α = 0, we obtain:
f ′′(0) = (p− q)2

q(1 − q) .

Using the Taylor expansion of f(α) around α = 0, we have:

f(1) = KL+(p∥q) = f(0) + f ′(0) + f ′′(0)
2 + higher-order terms.

Since f(0) = 0 and f ′(0) = 0, we get:

KL+(p∥q) = f ′′(0)
2 + higher-order terms = (p− q)2

2q(1 − q) + higher-order terms.

Thus, we approximate KL+(p∥q) as:

KL+(p∥q) ≥ (p− q)2

2q(1 − q) .

For p ≥ q ≥ 1
2 (or p ≤ q ≤ 1

2), this simplifies to:

KL+(p∥q) ≥ 2(p− q)2.

which completes the proof. ■
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Solution 3:
Let H be the set of concentric circles centered at the origin. Then, we prove that the
following claim is true.

Claim: VCdim(H) = 1.
Proof: Let hr ∈ H denote a circle of radius r, and suppose for a point x ∈ X ⊆ R2,

hr(x) =

1, if ||x|| < r,

0, otherwise.

First, we observe that any subset of size 1 can be shattered by H. For any point
x1 ∈ X, we can choose a circle such that x1 lies inside or outside the circle. Thus,
it is possible to assign any label to a single point, meaning that H can shatter any
subset of size 1.
Now, consider a subset {x1, x2} ⊆ X of size 2. We will show that no such subset
can be shattered by H.
Case 1: Suppose ||x1|| = ||x2||, i.e., both points are equidistant from the origin.
In this case, any circle hr ∈ H will assign the same label to both x1 and x2, as they
lie on the same circle. Hence, it is impossible to have different labels for p1 and x2,
so no subset of size 2 can be shattered in this case.
Case 2: Suppose ||x1|| ̸= ||x2||. Without loss of generality, assume ||x1|| < ||x2||.
Then, the labeling hr(x1) = 1 and hr(x2) = 0 is not possible, as any circle that
contains x2 must also contain x1. Similarly, it is impossible to have hr(x1) = 0 and
hr(x2) = 1. Thus, no subset of size 2 can be shattered in this case either.
Since no subset of size 2 can be shattered, therefore, VCdim(H) = 1.

Since VCdim(H) = 1 < ∞, i.e., H has a finite VC dimension, it follows that H is
both PAC learnable and agnostic-PAC learnable.

The same argument applies to concentric spheres in higher dimensions, as the key
property is the symmetry about the origin. For concentric spheres, no subset of size 2
can be shattered, and thus the VC dimension is also 1. Therefore, the hypothesis class
of concentric spheres is both PAC learnable and agnostic-PAC learnable as well. ■
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Solution 4:
We are given a concept class consisting of conjunctions of at most n Boolean literals
x1, x2, . . . , xn, x1, x2, . . . , xn, where each literal can take values in {0, 1}. Let H be the
hypothesis class of conjunctions of at most n Boolean literals. The total number of
conjunctions of these literals is given by the number of ways to select and combine the
literals. Since each variable xi can take two values, either xi or xi, the total number of
hypotheses in H is |H| = 2n. Now, we can compute the VC dimension of H.

Claim: The VC dimension of H is n.
Proof: We have,

VCdim(H) ≤ log2 |H| = n.

To show that the VC dimension of H is exactly n, consider a subset
{x1, x2, . . . , xn} ⊆ X, where each element in the subset corresponds to a differ-
ent literal. Since we can trivially shatter this subset of size n by appropriately
selecting conjunctions of literals from H, we conclude that VCdim(H) = n.

Since VCdim(H) = n, i.e., H has a finite VC dimension, it is both PAC learnable and
agnostic PAC learnable.

Next, we determine the sample complexity for PAC learning and agnostic PAC learn-
ing. For agnostic PAC learning, the sample complexity is given by the following inequal-
ity:

C1

(
n+ log(1

δ
)

ϵ2

)
≤ mH(ϵ, δ) ≤ C2

(
n+ log(1

δ
)

ϵ2

)
for some constants C1, C2 > 0.

For PAC learning, the sample complexity satisfies the following bound:

C1

n log
(

1
ϵ

)
+ log

(
1
δ

)
ϵ

 ≤ C2

n log
(

1
ϵ

)
+ log

(
1
δ

)
ϵ


for some constants C1, C2 > 0.

Thus, the hypothesis class of conjunctions of Boolean literals is both PAC learnable
and agnostic PAC learnable, with the sample complexity bounds as described above. ■
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Solution 5:
Let A be the algorithm described in the problem, and let R ∈ C be an axis-aligned
rectangle. Consider ϵ > 0, m ∈ N, and D as a distribution over R2 × {0, 1}, such that
(X, Y ) ∼ D, where the label Y = 1 occurs with probability 1 − η when X ∈ R, and with
probability η, Y is flipped to 0 (i.e., Y = 0 occurs due to noise). When X /∈ R, Y = 0
deterministically. Let r, t, b, l ∈ R such that R = [l, r] × [b, t].

Now, let S = {(X1, Y1), . . . , (Xm, Ym)} ∼ Dm be a sample of m i.i.d. points, and let
RS = A(S) be the rectangle learned by the algorithm A from the sample S.

If P(X ∈ R) < ϵ, then since RS ⊆ R, the algorithm achieves the desired accuracy
because the error can only come from R\RS ∩R. Hence, if the probability mass of points
inside R is smaller than ϵ, we are done.

If P(X ∈ R) ≥ ϵ, define four regions by slicing R into four chunks. Define r1 =
[l, g1] × [b, t], where g1 = inf{g ≥ l | P(X ∈ [l, g] × [b, t]) ≥ ϵ/4}, which takes a “chunk”
from the left side of R. Similarly, define r2, r3, r4, which represent chunks taken from the
right, bottom, and top of R, respectively.

Now consider the risk of RS, which is the probability that the hypothesis RS makes
an incorrect prediction:

P(RS) = P(1RS
(X) ̸= Y | X ∈ R \RS) = P(X ∈ R \RS).

If P(RS) ≥ ϵ, then RS ∩ ri = ∅ for some i ∈ {1, 2, 3, 4} because, otherwise, the set
R\RS would be covered by the union of the four chunks r1, . . . , r4, which would contradict
the assumption that the error is larger than ϵ.

Thus, we have the following bound on the probability that P(RS) ≥ ϵ:

P(RS ≥ ϵ) ≤ P
( 4⋃

i=1
{RS ∩ ri = ∅}

)
.

By the union bound, this is less than or equal to:

4∑
i=1

P(RS ∩ ri = ∅).

Next, we can further bound this by the probability that all points in the sample S
fall outside of ri:

4∑
i=1

P(X1 ∈ ri, Y1 ̸= 1ri
(X1), . . . , Xm ∈ ri, Ym ̸= 1ri

(Xm)).

Since the points (X1, Y1), . . . , (Xm, Ym) are i.i.d., we can simplify this as:

4∑
i=1

P(X ∈ ri, Y ̸= 1ri
(X))m.

Now, consider the probability P(X ∈ ri, Y ̸= 1ri
(X)). Since Y = 1 with probability

1 − η for X ∈ ri, we have:

P(X ∈ ri, Y ̸= 1ri
(X)) = 1 − P(X ∈ ri, Y = 1).

This equals:
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1 − (1 − η)P(X ∈ ri) ≥ (1 − η)ϵ/4.

Hence, the probability of error on ri is bounded by:

P(X ∈ ri, Y ̸= 1ri
(X))m ≤ exp(−m(1 − η)ϵ/4).

Summing over all four chunks r1, r2, r3, r4, we obtain the following bound:

4∑
i=1

P(X ∈ ri, Y ̸= 1ri
(X))m ≤ 4 exp(−m(1 − η)ϵ/4).

Thus, we have:

P(RS ≥ ϵ) ≤ 4 exp(−m(1 − η)ϵ/4).

Finally, to ensure that the probability of error is at most δ, we set the right-hand side
smaller than δ, leading to the sample complexity bound:

m ≥ 4
(1 − η)ϵ log

(4
δ

)
.

This shows that the sample complexity required to PAC learn in this noisy scenario,
with noise rate η, is O

(
1

(1−η)ϵ log
(

1
δ

))
. Hence, we can still achieve agnostic PAC learning

despite the label noise, provided we have enough samples. ■
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Solution 6:
Observe that the subset {1} ⊆ X is trivially shattered by {c0, c1}. Additionally, the subset
{12, 23} ⊆ X is shattered by {c0, c1, c2, c3}, as each number has a distinct combination
of digits.

Now, consider a general subset {x, y, z} ⊆ X. Suppose {x, y, z} is shattered by C.
This would imply the existence of indices i, j, k, l ∈ {0, 1, 2, . . . , 9} such that:

1. x ∈ ci, but y, z /∈ ci,

2. x, y ∈ cj, but z /∈ cj,

3. x, z ∈ ck, but y /∈ ck,

4. x, y, z ∈ cl.

From condition 1, we deduce that x must have a digit that is not in y or z. Let this
digit be dxy. Similarly, condition 2 implies that x and y share a digit not in z, say dxz,
and condition 3 implies that x and z share a digit not in y, say dyz. Lastly, condition 4
implies that x, y, z all share a common digit, say dxyz.

However, observe that none of dxy, dxz, dyz, dxyz can be equal, as each must represent
a distinct condition on the digits of x, y, z. But since each number in X has at most three
digits, this leads to a contradiction (there are only three digits available, but we require
four distinct digits to satisfy all the conditions).

Therefore, no subset of size 3 can be shattered by C. Since subsets of size 2 can be
shattered, we conclude that the VC dimension of C is 2. ■
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Solution 7:
Let X1, X2, . . . , Xn be i.i.d. random variables taking values in [0, 1] with mean µ. Define
X = 1

m

∑m
i=1 Xi. We aim to show that for any ϵ such that µ + ϵ < 1, the following

inequality holds:
P(X ≥ µ+ ϵ) ≤ e−mKL+(µ+ϵ∥µ),

where KL+(p∥q) is the KL divergence between two Bernoulli distributions, given by

KL+(p∥q) = p ln p
q

+ (1 − p) ln 1 − p

1 − q
.

To derive the desired bound, we apply Chernoff’s method. Consider the probability
we seek to bound:

P
(
X ≥ µ+ ϵ

)
= P

(
1
m

m∑
i=1

Xi ≥ µ+ ϵ

)
= P

(
m∑

i=1
Xi ≥ m(µ+ ϵ)

)
.

Using the exponential Markov inequality, for any t > 0, we have:

P
(

m∑
i=1

Xi ≥ m(µ+ ϵ)
)

≤ E
[
et
∑m

i=1 Xi

]
e−tm(µ+ϵ).

Since X1, X2, . . . , Xm are independent and identically distributed, the moment generating
function of ∑m

i=1 Xi factorizes as:

E
[
et
∑m

i=1 Xi

]
=

m∏
i=1

E
[
etXi

]
=
(
E
[
etX1

])m
.

Thus, the bound becomes:

P(X ≥ µ+ ϵ) ≤
(
E
[
etX1

])m
e−tm(µ+ϵ).

Next, to minimize this bound, we optimize the exponent by choosing the value of t
that minimizes the function E

[
etX1

]
− t(µ + ϵ). Let ψ(t) = lnE

[
etX1

]
. We now aim to

minimize the exponent:
ψ(t) − t(µ+ ϵ).

To find the optimal t, we differentiate with respect to t and set the derivative to zero:

d

dt
(ψ(t) − t(µ+ ϵ)) = 0 ⇒ ψ′(t) = µ+ ϵ.

This equation characterizes the optimal choice of t.
For random variables Xi ∈ [0, 1], the cumulant generating function ψ(t) is related

to the Kullback-Leibler divergence between two Bernoulli distributions. Specifically, the
minimum value of ψ(t) − t(µ+ ϵ) corresponds to −KL+(µ+ ϵ∥µ), where:

KL+(µ+ ϵ∥µ) = (µ+ ϵ) ln µ+ ϵ

µ
+ (1 − µ− ϵ) ln 1 − µ− ϵ

1 − µ
.

Thus, the probability bound becomes:

P(X ≥ µ+ ϵ) ≤ e−mKL+(µ+ϵ∥µ).
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Finally, we deduce Hoeffding’s inequality from this result. Hoeffding’s inequality
provides a bound for sums of bounded independent random variables. Specifically, for
random variables Xi ∈ [0, 1], Hoeffding’s inequality states:

P(X ≥ µ+ ϵ) ≤ e−2mϵ2
.

To see how this follows from the KL-divergence bound, we approximate KL+(µ + ϵ∥µ)
for small ϵ. Using a second-order Taylor expansion around ϵ = 0, we find:

KL+(µ+ ϵ∥µ) ≈ ϵ2

2µ(1 − µ) .

Since µ(1 − µ) ≤ 1
4 for µ ∈ [0, 1], we obtain the inequality:

KL+(µ+ ϵ∥µ) ≥ 2ϵ2.

Therefore, the bound:
P(X ≥ µ+ ϵ) ≤ e−mKL+(µ+ϵ∥µ)

implies Hoeffding’s inequality:

P(X ≥ µ+ ϵ) ≤ e−2mϵ2
.

■
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Solution 8:
We need to show that when q is fixed, KL+(p∥q) is a convex function of p, and when p
is fixed, KL+(p∥q) is a convex function of q.

First, consider q fixed. Let

f(p) = KL+(p∥q) = p ln p
q

+ (1 − p) ln 1 − p

1 − q
.

To establish convexity, we need to compute the second derivative of f(p) with respect to
p. The first derivative of f(p) is:

f ′(p) = d

dp

(
p ln p

q
+ (1 − p) ln 1 − p

1 − q

)
Applying the product and chain rules, we obtain:

f ′(p) = ln p
q

+ 1 − ln 1 − p

1 − q
− 1 = ln p

q
− ln 1 − p

1 − q
.

Next, we compute the second derivative:

f ′′(p) = d

dp

(
ln p
q

− ln 1 − p

1 − q

)
This gives:

f ′′(p) = 1
p

+ 1
1 − p

.

Since 1
p

+ 1
1−p

> 0 for all p ∈ (0, 1), the second derivative is strictly positive, implying
that f(p) is convex for all p ∈ (0, 1). Therefore, KL+(p∥q) is a convex function of p when
q is fixed.

Now, consider p fixed. Let

h(q) = KL+(p∥q) = p ln p
q

+ (1 − p) ln 1 − p

1 − q
.

We now compute the second derivative of h(q) with respect to q to show convexity. The
first derivative of h(q) is:

h′(q) = d

dq

(
p ln p

q
+ (1 − p) ln 1 − p

1 − q

)
Using the product and chain rules, we obtain:

h′(q) = −p

q
+ 1 − p

1 − q
.

Next, we compute the second derivative:

h′′(q) = d

dq

(
−p

q
+ 1 − p

1 − q

)
This gives:

h′′(q) = p

q2 + 1 − p

(1 − q)2 .

Since p
q2 + 1−p

(1−q)2 > 0 for all p, q ∈ (0, 1), the second derivative is strictly positive, which
implies that h(q) is convex for all q ∈ (0, 1). Therefore, KL+(p∥q) is a convex function
of q when p is fixed.

Thus, we have shown that KL+(p∥q) is convex in p when q is fixed and convex in q
when p is fixed. ■
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Solution 9:
Let p(h) and q(h) be two functions defined on the hypothesis space H, where p(h) ∈ (0, 1)
and q(h) ∈ (0, 1), and let Q be a probability distribution on H. We want to show that

KL+ (Eh∼Q[p(h)]∥Eh∼Q[q(h)]) ≤ Eh∼Q

[
KL+(p(h)∥q(h))

]
.

From problem 8, we have, the function KL+(p∥q) is a convex function of p when q is
fixed and a convex function of q when p is fixed. We shall use Jensen’s inequality, which
states that for any convex function f(X) and a random variable X with distribution Q,
the following inequality holds:

f(E[X]) ≤ E[f(X)].

Applying this to the convex function f(p(h), q(h)) = KL+(p(h)∥q(h)) and the distribu-
tion Q, we get

KL+ (Eh∼Q[p(h)]∥Eh∼Q[q(h)]) = f (Eh∼Q[p(h)],Eh∼Q[q(h)]) ≤ Eh∼Q[f(p(h), q(h))].

Since f(p(h), q(h)) = KL+(p(h)∥q(h)), this simplifies to

KL+ (Eh∼Q[p(h)]∥Eh∼Q[q(h)]) ≤ Eh∼Q

[
KL+(p(h)∥q(h))

]
,

which completes the solution. ■
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