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Problem 1:
Solve the following two questions on trees

• Let G be a tree, which we consider as the network of roads in a medieval country,
with castles as nodes. The King lives at node r. On a certain day, the lord of each
castle sets out to visit the King. Argue carefully that soon after they leave their
castles, there will be exactly one lord on each edge.

• If we delete a node v from a tree (together with all edges that end there), we get a
graph whose connected components are trees. We call these connected components
the branches at node v. Prove that every tree has a node such that every branch
at this node contains at most half the nodes of the tree.

Solution 1:

• Suppose that initially, all lords are at their respective castles and the King is at
node r. When each lord starts his journey towards the King, he must take an edge
that leads to a neighbouring node. If two lords start their journey along the same
edge, then they will eventually meet at some point along that edge. At that point,
one of the lords will turn around and head back to his castle, while the other will
continue on to the King. Thus, at most one lord can travel along each edge at any
given time.
Now suppose, for the sake of contradiction, that there exists an edge e with no lord
traveling along it. Let u and v be the nodes on either end of e. Since G is a tree,
there is a unique path from u to v. Let w be the last node on this path that is not
on e. Since e has no lord on it, all lords that started at nodes in the subtree rooted
at v must have passed through w at some point. This is because, if they didn’t,
they would have had to cross e to reach the King, which we assumed is impossible.
Thus, there is at least one lord in the subtree rooted at v that has passed through
w. However, there must also be at least one lord in the subtree rooted at u that
has passed through w. Otherwise, all lords from u would have had to pass through
v to reach the King, which is impossible since e has no lord on it. Therefore, there
are at least two lords at w, which is a contradiction.
Therefore, we conclude that after each lord sets out from his castle, there will be
exactly one lord on each edge.

• We will prove the given statement by contradiction. Assume that there is no node
in the tree such that every branch at this node contains at most half the nodes of
the tree. Then for any node v in the tree, there must be a branch at v that contains
more than half of all nodes in the tree.
Let us start at an arbitrary node v in the tree. Suppose the branch B at v contains
more than half of all nodes in the tree. Then we move along the edge leading to B
and consider the tree rooted at B. Since B contains more than half of all nodes,
the remaining branches contain at most half of all nodes. Thus, there must be a
branch B′ in the remaining branches at v that contains more than half of all nodes
in the subtree rooted at B′. We repeat this process, always moving to a branch
that contains more than half of all nodes.
Since the tree is finite, this process must eventually stop. We cannot backtrack
to a previously visited node, because doing so would mean that there is an edge
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whose deletion results in two connected components, both containing more than
half of the nodes, which contradicts the assumption that every branch at each node
contains more than half of all nodes. Therefore, we must get stuck at a node u such
that each branch at u contains at most half of all nodes.

■
Problem 2:
Prove that in a connected graph G with at least three vertices, any two longest paths
have a vertex in common.
Solution 2:
Suppose P1 = (u1, u2, . . . , un), P2 = (v1, v2, . . . , vn) be two longest paths in G of length n
with no vertices in common. Since G is connected, so there is a path P connecting P1 and
P2. Therefore, there exists some last vertex ui of P on P1 and some first vertex vj of P on
P2 for some 1 ≤ i, j ≤ n. Hence, the path P ′ connecting ui to vj shares no common vertex
with P1 ∪ P2 other than ui and vj. Let P ′ = (ui, w1, w2, . . . , wk, vj), k ≥ 1, be the path.
Without loss of generality, we can assume i, j ≥ n

2 . Then we can construct a new path
P ∗ = (u1, u2, . . . , ui, w1, w2, . . . , wk, vj, vj−1, . . . , v1), which has length ≥ i + j + 1 ≥ n + 1,
which is a contradiction to the assumption that the longest paths of G has length n. ■

Problem 3:
(Graphic matroid) Let (V, I) and (V, J) be two forests on the same vertex set V where
|I| < |J |. Show that there is an edge j ∈ J such that (V, I ∪ {j}) is also a forest.
Solution 3:
Let M = (V, E) be the graphic matroid associated with the undirected graph G = (V, E),
and let I and J be two forests of G. Since I is a forest, it does not contain any cycles.
Thus, I induces a forest matroid MI = (V, EI), where EI is the set of edges in I. Sim-
ilarly, J induces a forest matroid MJ = (V, EJ). We know that |I| < |J |, which means
that MI has fewer edges than MJ . Therefore, there must be at least one edge j ∈ EJ \EI

that can be added to I without creating a cycle. This is because if we were to add an
edge j ∈ EJ \EI to I, creating a cycle C, we could remove an edge i ∈ EI ∩C to obtain a
forest with |I ∪{j}| ≥ |I|+1 edges, contradicting the fact that I is a forest with |I| edges.
Thus, j can be added to I to obtain a new forest I ∪ {j}. Moreover, since j /∈ EI , adding
j to I cannot create a cycle, which implies that (V, I ∪ {j}) is also a forest. Therefore,
there exists an edge j ∈ J such that (V, I ∪ {j}) is a forest. ■

Problem 4:
Let Kn be the complete graph on the vertices [n] and F be a field. Let x1, x2, . . . , xn be
the standard basis for Fn. For each 1 ≤ i < j ≤ n, we associate a vector in Fn to the
edge e = {i, j} of Kn given by xe = xi − xj. Show that the set of vectors xe1 , xe2 , . . . , xek

are linearly independent if and only if the edges e1, e2, . . . , ek do not contain a cycle in Kn.

Solution 4:
First, we prove that if the set of vectors if the xe1 , xe2 , . . . , xek

are linearly independent,
then the edges e1, e2, . . . , ek do not contain a cycle in Kn. This is equivalent to prov-
ing that if the edges e1, e2, . . . , ek contain a cycle C, then the vectors xe1 , xe2 , . . . , xek

are linearly dependent. Suppose C is a cycle with vertices v1, v2, . . . , vk and edges
e1 = {v1, v2}, e2 = {v2, v3}, . . . , ek = {vk, v1}. Then, we have

xe1 + xe2 + · · · + xek
= (xv1 − xv2) + (xv2 − xv3) + · · · + (xvk

− xv1) = 0,
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where 0 denotes the zero vector in Fn. Therefore, the vectors xe1 , xe2 , . . . , xek
are linearly

dependent.
Next, we will prove that if the edges e1, e2, . . . , ek do not contain a cycle in Kn, then the

set of vectors xe1 , xe2 , . . . , xek
are linearly independent. Suppose the edges e1, e2, . . . , ek

do not contain a cycle in Kn. Suppose, for the sake of contradiction, that there exist
scalars a1, a2, . . . , ak ∈ F, not all zero, such that

a1xe1 + a2xe2 + · · · + akxek

where 0 denotes the zero vector in Fn. We can assume without loss of generality that
a1 ̸= 0. Then we have

xe1 = −a2

a1
xe2 − a3

a1
xe3 − · · · − ak

a1
xek

.

Let S be the set of vertices in [n] that appear in the edges e2, e3, . . . , ek. Then i /∈ S
implies that xi appears in xe1 with non-zero coefficient. It follows that i ∈ S for all i ∈ [n].
Therefore, S is a non-empty proper subset of [n], and we can write S = {i1, i2, . . . , iℓ} for
some ℓ ≥ 1.

Let T be a maximal path in the subgraph of Kn induced by the vertices i1, i2, . . . , iℓ,
with endpoints ip and iq say. Since e1 does not contain a cycle, we have ip = i1 or iq = i1.
Without loss of generality, we can assume iq = i1. Then the edge e1 is of the form {i1, ir}
for some r ∈ {p + 1, p + 2, . . . , q − 1}. We have

xe1 = xi1 − xir

=
r−1∑

j=p+1
(xij

− xij+1) + xir − xi1

=
r−1∑

j=p+1
xij

−
r∑

j=p+2
xij

+ xir − xi1 .

Each vector xij
− xij+1 for p + 1 ≤ j ≤ r − 1 appears in xe2 , xe3 , . . . , xek

with non-zero
coefficient, since ij, ij+1 ∈ S. Hence we can write xe1 as a linear combination of the vec-
tors xe2 , xe3 , . . . , xek

with non-zero coefficients, which contradicts the assumption that the
vectors xe1 , xe2 , . . . , xek

are linearly independent. Therefore, the vectors xe1 , xe2 , . . . , xek

are linearly independent. ■

Problem 5:
We know that for any n, the set of all transpositions (2-cycles) generates the symmetric
group Sn. We associate a graph on the vertex set [n] to a set of transpositions by iden-
tifying the transposition (i j) with the edge joining the vertices i and j. Show that a set
of transpositions generates Sn if and only if the corresponding graph on [n] is connected.
Solution 5:
Suppose we have a set S of transpositions that generate Sn, and let G be the correspond-
ing graph on [n]. We want to show that G is connected. We will do this by contradiction.
Suppose G is not connected, so that it has at least two connected components C1 and
C2. Let S1 be the set of transpositions that correspond to edges within C1, and let S2
be the set of transpositions that correspond to edges within C2. Note that S1 and S2
generate Sn separately. Let σ ∈ Sn be any permutation that maps a vertex in C1 to a
vertex in C2 (such a permutation exists since C1 and C2 are disjoint). Then σ cannot
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be written as a product of transpositions in S1 or in S2, since any transposition in S1 or
S2 corresponds to an edge within its respective connected component, and applying such
a transposition to a vertex in C1 or C2 will not move the vertex to the other connected
component. Hence, S1 and S2 do not generate σ, which contradicts the assumption that
S generates Sn.

Conversely, suppose the graph G is connected. We want to show that the set S of
transpositions corresponding to edges in G generates Sn. We will do this by induction on
n. If n = 2, then G consists of a single edge, and S consists of a single transposition, so
S generates S2. Now assume that n > 2, and that the result holds for all smaller values
of n. Let σ ∈ Sn be any permutation. We will show that σ can be written as a product
of transpositions in S. If σ is the identity permutation, then we are done. Otherwise,
σ has at least one non-fixed point, say i. Let j be any element of [n] \ {i, σ(i)}, and
let τ = (i j). Then τ corresponds to an edge in G, and we can write σ as the product
σ = σ′τ where σ′ fixes i and σ′(i) = j. By induction, we can write σ′ as a product of
transpositions in S, say σ′ = τ1τ2 · · · τk for some k ≥ 0. Then we have σ = ττ1τ2 · · · τk,
so σ can be written as a product of transpositions in S. Therefore, S generates Sn. ■

Problem 6:
Let G be a group and S ⊆ G be a subset of G. Construct a simple, undirected graph
Γ with vertex set G and an edge between all pairs of the form {g, sg} and {g, s−1g} for
g ∈ G, s ∈ S. Show that S generates G if and only if Γ is a connected graph. In general,
the connected components of Γ give us a partition of G. Can you describe this partition?
Solution 6:
To show that S generates G if and only if Γ is a connected graph, we will first prove the
following lemma:

Lemma: Let G be a group and S ⊆ G. Then, for any g, h ∈ G, there exists a path
in Γ from g to h if and only if h ∈ ⟨S⟩g.

Proof: Suppose there exists a path in Γ from g to h. Then, this path must consist
of a sequence of edges of the form {x, sx} or {x, s−1x} for some x ∈ G and s ∈ S.
Let x0 = g, xn = h, and let x1, x2, . . . , xn−1 be the vertices in the path (in order).
Then, we have xi = sixi−1 or xi = s−1

i xi−1 for each i = 1, . . . , n − 1, where si ∈ S.
It follows that xn = snsn−1 · · · s1x0 ∈ ⟨S⟩x0.
Conversely, suppose h ∈ ⟨S⟩g. Then, we can write h = snsn−1 · · · s1g for some
s1, . . . , sn ∈ S. We can then construct a path in Γ from g to h as follows: start
with the vertex g, and then for each i = 1, . . . , n, add the edges xi, sixi and xi, s−1

i xi,
where xi = si−1 · · · s1g. This gives a path from g to h in Γ, as desired.

Now, to prove the main result, suppose S generates G. We want to show that Γ is
connected. Let g, h ∈ G be arbitrary. By the previous lemma, it suffices to show that
h ∈ ⟨S⟩g. But this is true by assumption, so the lemma implies that there is a path in Γ
from g to h. Hence, Γ is connected.

Conversely, suppose Γ is connected. We want to show that S generates G. Let g ∈ G
be arbitrary. By the connectedness of Γ, there exists a path in Γ from e to g, where e is
the identity element of G. By the previous lemma, this implies that g ∈ ⟨S⟩e = ⟨S⟩, so
S generates G.
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Finally, we describe the partition of G induced by the connected components of Γ.
Let Γ1, . . . , Γk be the connected components of Γ, and let G1, . . . , Gk be the correspond-
ing subsets of G. Then, by definition, each Gi is a union of ⟨S⟩-cosets. Moreover, any
two ⟨S⟩-cosets in the same connected component of Γ must intersect, since there is a
path between any two points in the component. Conversely, if two ⟨S⟩-cosets intersect
in G, then their representatives must be connected by an edge in Γ. Hence, the con-
nected components of Γ give us a partition of G into sets of the form ⟨S⟩gi, where gi

is a representative of each ⟨S⟩-coset contained in the component. This means that the
partition induced by the connected components of Γ gives us a decomposition of G into
subsets of the form ⟨S⟩g, where g is a representative of each ⟨S⟩-coset contained in the
same connected component of Γ. In other words, the partition consists of sets of the form
Sg := {sg | s ∈ S}, where g ranges over the representatives of the ⟨S⟩-cosets contained
in the same connected component of Γ. ■

Problem 7:
Let S be a collection of sets. Construct a graph with S as vertices by setting two sets in
S to be adjacent if they intersect. Show that any simple graph G can be seen as such a
graph.
Solution 8:
Let G = (V, E) be a simple graph. We can construct a collection of sets S as follows: for
each vertex v ∈ V , let Sv be the set of neighbours of v, i.e., Sv = {u ∈ V : (u, v) ∈ E}.
Then S = {Sv : v ∈ V }.

Now we show that the graph constructed from S is isomorphic to G. Given any two
sets Su and Sv in S, we connect them with an edge if and only if u and v are adjacent in
G. This implies that the graph constructed from S has the same set of vertices as G. To
see that it has the same set of edges, note that if u and v are adjacent in G, then Su and
Sv have a nonempty intersection (since they both contain a common element, namely
u or v respectively). Conversely, if Su and Sv have a nonempty intersection, then there
exists some element w that is both a neighbour of u and a neighbour of v, so u and v
are adjacent in G. Thus, the graph constructed from S has an edge between Su and Sv

if and only if u and v are adjacent in G.
Therefore, the graph constructed from S is isomorphic to G, and any simple graph

can be seen as a graph constructed from a collection of sets as described above. ■

Problem 8:
Here is an alternative definition of matroid via circuits. Prove that this definition is
equivalent with the definition of matroid via independent sets (show how to get circuits
from independent sets and vice versa). A matroid M is a pair (E, C) consisting of a finite
set E and a collection C of subsets of E satisfying:

• ∅ /∈ C

• If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2

• If C1, C2 are distinct members of C and e ∈ C1 ∩ C2, then there is a member C3 of
C such that C3 ⊆ (C1 ∪ C2) − e

Solution 8:
We will show that the two definitions are equivalent by constructing a matroid via circuits
given a collection of independent sets and vice versa.
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From independent sets to circuits:
Let M = (E, I) be a matroid defined by its independent sets. Define the collection C of
circuits as follows: C ⊆ E is a circuit if and only if C is a minimal dependent set (i.e.,
no proper subset of C is dependent). We need to show that the pair (E, C) satisfies the
three conditions for a matroid.

• ∅ is independent in M so it is not dependent and hence it is a circuit in (E, C).

• If C1, C2 ∈ C and C1 ⊆ C2, then C1 is a subset of a minimal dependent set C2, and
therefore C1 must be dependent. Thus, C1 is a circuit in (E, C) and by minimality,
it must be equal to C2.

• Suppose that C1, C2 ∈ C are distinct and e ∈ C1 ∩ C2. Then, C1 and C2 are both
dependent sets, and e is not a basis element. Thus, there exists an independent set
B such that C1 ∪ C2 ⊆ B, but e /∈ B. Let C3 be a maximal circuit contained in
B ∪ e. Then C3 is a dependent set since it is a circuit, and C3 ⊆ (C1 ∪ C2) − e
by maximality. Moreover, C3 cannot be a subset of either C1 or C2 by maximality.
Therefore, the pair (E, C) satisfies the three conditions for a matroid.

From circuits to independent sets:
Let M = (E, C) be a matroid defined by its circuits. Define the collection I of independent
sets as follows: I ⊆ E is independent if and only if no circuit is contained in I. We need
to show that the pair (E, I) satisfies the three conditions for a matroid.

• Since ∅ does not contain any circuit, it is independent in M , and hence it is in I.

• Let I1, I2 ∈ I with |I1| < |I2|. Assume there exists a circuit C contained in I2 − I1.
Then, I1 ∪ C is a dependent set since it contains a circuit. By the definition of I,
I1∪C cannot be in I. Therefore, there exists an element e ∈ C such that I1∪(C−e)
is in I. Furthermore, I1 ∪ (C − e) is contained in I2, since C is contained in I2, and
e is not in I1. Hence, I1 ∪ (C − e) is a basis of M contained in I2. This shows that
(E, I) satisfies the basis exchange property.

• Finally, suppose that I1, I2 ∈ I and e ∈ I1 ∩ I2. Then no circuit is contained in
either I1 or I2. Let I3 = (I1 ∪I2)−e. We claim that I3 is independent. Suppose not,
and let C be a circuit contained in I3. Then C is also a circuit contained in either
I1 or I2, which contradicts the fact that these sets are independent. Therefore, I3
is independent, and hence (E, I) satisfies the third condition for a matroid.

Therefore, we have shown that the two definitions are equivalent. ■

Problem 9:
Let T and T ′ be two distinct trees on the same vertex set. Let e be an edge that is in T
but not T ′. Show that there exists an edge e′ that is in T ′ but not T such that T ′ + e − e′

(adding e to T ′ and removing e′) is also a tree. Use this to prove that for a weighted
connected graph with distinct edge weights, there is a unique minimal spanning tree.
Solution 9:
Let u and v be the endpoints of edge e in T . Since T ′ is a tree, there exists a unique path
P in T ′ connecting u and v. Let e′ be the edge in P that is not in T . Note that e′ exists
since T and T ′ are distinct trees on the same vertex set. Also note that e′ ̸= e since e is
in T and e′ is in T ′.
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Now, consider the graph T ′ + e − e′. Since T ′ is a tree, removing any edge from
T ′ disconnects the tree into two connected components; i.e., removing edge e′ from T ′

disconnects u and v, while adding edge e connects them. Thus, T ′ + e − e′ is connected.
To show that T ′ + e − e′ is a tree, it suffices to show that it is acyclic. Suppose, for

the sake of contradiction, that T ′ + e − e′ contains a cycle C. Since T ′ is acyclic, C must
contain e. Moreover, C must contain another edge e′′ that is not in T ′. Note that e′′

cannot be in T since T is acyclic. Thus, e′′ must be in T ′ + e − e′. Since C is a cycle in
T ′ +e−e′, there exists a path P1 from u to v in T ′ +e−e′ that uses edge e′′. However, P1
together with edge e′ forms a cycle in T ′, which is a contradiction. Therefore, T ′ + e − e′

is acyclic and thus a tree.
Now, let G be a weighted connected graph with distinct edge weights, and let T and

T ′ be two minimal spanning trees of G. Let e be an edge in T that is not in T ′. By the
argument above, there exists an edge e′ in T ′ that is not in T such that T ′ + e − e′ is
also a tree. Since T is a minimal spanning tree, the weight of e is strictly less than the
weight of e′. Thus, the weight of T ′ + e − e′ is strictly less than the weight of T ′. This
contradicts the minimality of T ′. Therefore, T and T ′ have the same set of edges, and
thus T is unique. ■

Problem 10:
For an undirected graph on the vertices [n], if the adjacency matrix is An×n, then the
(i, j)-th entry of Am is the number of walks of length m from vertex i to j. Define the
adjacency matrix A for a directed graph in such a way that the (i, j)-th entry of Am is
the number of directed walks of length m from vertex i to j.
Solution 10:
Let A be the adjacency matrix of a directed graph on the vertices [n]. We want to find
the (i, j)-th entry of Am, which represents the number of directed walks of length m from
vertex i to vertex j.

We can compute Am recursively using the formula:

(Am)i,j =
n∑

k=1
(Am−1)i,kAk,j

where (Am−1)i,k is the (i, k)-th entry of Am−1. This means that the (i, j)-th entry of
Am is obtained by summing over all possible intermediate vertices k and multiplying the
number of walks of length m − 1 from vertex i to vertex k (which is given by (Am−1)i,k)
by the number of edges from vertex k to vertex j (which is given by Ak,j), which is the
number of directed walks of length m from vertex i to j. ■

Problem 11:
Show that the number of spanning trees of the complete bipartite graph K2,n is n · 2n−1.
Solution 11:
Let V = {v1, v2} and W = {w1, w2, . . . , wn} be the two bipartition sets of K2,n. We shall
count the number of spanning trees of K2,n by fixing one of the bipartition sets (say V )
and then counting the number of ways to construct a spanning tree by choosing edges
incident to the vertices in V .

Consider any pair of vertices x, y ∈ V . Since K2,n is bipartite, any spanning tree
of K2,n must contain the edge xy. Let wi be a vertex in W that is adjacent to x in
K2,n. Since any spanning tree of K2,n must be connected, it must contain the edge xwi.
Similarly, let wj be a vertex in W that is adjacent to y in K2,n. Then any spanning
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tree of K2,n must contain the edge ywj. Now, we need to choose exactly one neighbour
for each vertex in W , to be included in the spanning tree. For each wk ∈ W , there are
two possible neighbours in V to choose from, namely v1 and v2. Therefore, there are 2n

possible ways to choose the neighbours for all vertices in W .
Since there are n possible choices for wi, wj, and 2n possible ways to choose the neigh-

bours for all vertices in W , the total number of spanning trees is n · 2n. However, we
have overcounted each spanning tree by a factor of 2 since we have two possible choices
for xy. Therefore, the actual number of spanning trees of K2,n is n · 2n−1, as desired. ■

Problem 12:
Let G be a bipartite graph with partitions X and Y , and suppose that the degree of each
vertex in X is greater than the degree of any vertex in Y . Prove that the graph has a
matching covering every vertex in X.
Solution 12:
Given that deg(x) ≥ deg(y) for every x ∈ X, y ∈ Y . To prove that G has a matching
covering every vertex in X, we will use Hall’s theorem, which states that a bipartite graph
G has a matching covering every vertex in X if and only if for every subset S of X, the
set N(S) of neighbours of S in Y satisfies |N(S)| ≥ |S|.

Let S be an arbitrary subset of X. We need to show that |N(S)| ≥ |S|. We do this
as follows:

|S| =
∑
x∈S

∑
y∈Y

xy∈E(G)

1
deg(x)

=
∑
x∈S

∑
y∈N(S)

xy∈E(G)

1
deg(x)

≤
∑
x∈S

∑
y∈N(S)

xy∈E(G)

1
deg(y)

=
∑

y∈N(S)

∑
x∈S

xy∈E(G)

1
deg(y)

≤
∑

y∈N(S)

∑
x∈X

xy∈E(G)

1
deg(y)

≤ N(S)

Thus, we have shown that G satisfies Hall’s condition for every subset S of X, and hence
G has a matching covering every vertex in X. ■
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