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Throughout, for a statement P, we denote

1Pl = {1, if P is true

0, otherwise



Problem 1:

Suppose P, = (51, <1) and P, = (S, <2) are finite posets. Define their product poset as
P(S; x Sy, <) where (a,a2) < (b1,by) iff a; <1 by and ag <5 be. Show that the Mobius
function p of P is u((a,b), (c,d)) = pi(a,c) - pa(b, d), where p; is the Mobius functions of
Pi=1,2

Solution 1:
To show that the Mébius function p of P is p((a,b), (¢,d)) = ui(a,c) - ua(b, d), we need
to verify that the equation holds for all pairs of elements (a,b), (¢,d) € Sy X Sy such that
(a,b) < (¢,d) and is equal to 0 if (a,b) £ (¢, d).

First, we consider the case when (a,b) < (¢, d); we then have a <; ¢ and b <5 d, and
therefore,

Z ,u((w,y),(C, d)) = Z Z M((uav)v(ca d))

(a,b)-<(x,y)-<(c,d) a<1uU<1C b<rv<od

(> m(u,c))-( > m<v,d>)
a<i1u<1c b<2v<ad

= ,ul(a, C) : ,UQ(b7 d)?

Now, we consider the case where (a,b) £ (¢,d). Then, there exists some (z,y) such that
(a,b) < (z,y) < (¢,d). Since u((z,y), (¢,d)) # 0, we have p((a,b), (¢,d)) = 0, which is
consistent with the formula p((a,b), (¢,d)) = p1(a, ¢)- pa(b, d) since at least one of py(a, c)
and po(b,d) is 0.

Therefore, we have shown that the formula u((a,b), (c,d)) = pi(a,c) - p2(b, d) holds
for all pairs of elements (a,b), (¢,d) € S; X Sy in the product poset P(S; X Sa, <).

Problem 2:

Show that the subset poset (2", C) is isomorphic to the boolean strings poset (B", <)
where B = {0,1} is the boolean poset and B" is its n-fold product. Hence, derive the
Mébius function of the subset poset to be u(I,J) = (—1)\l for I C J.

Solution 2:
To show that the subset poset (2/", C) is isomorphic to the boolean strings poset (B", <),
we will construct a bijection ¢ : 2" — B" that preserves the order.

Let S C [n] be a subset of [n]. We can represent S as a binary string of length n by
setting the i-th bit to 1 if and only if i € S, i.e., we define ¢(S) = (b1, bs, ..., b,), where
b; =1if 7 € S and b; = 0 otherwise.

Clearly, ¢ is injective because no two distinct subsets of [n] have the same binary
representation. Furthermore, ¢ is surjective because any binary string of length n corre-
sponds to a unique subset of [n].

Now, we need to show that ¢ preserves the order, i.e., S C T if and only if p(S) <
©(T'). Suppose S C T. Then, for any i € [n], if i € S, then ¢ € T, which implies that the
i-th bit of p(T') is 1. Therefore, p(S) < ¢(T"). On the other hand, if p(S) < ¢(T), then
there exists an index j € [n| such that ¢(S); = 0 and p(T"); = 1, where ¢(S); denotes
the j-th bit of ¢(S). This implies that j € T and j ¢ S, which implies that S C T

Therefore, we have constructed an isomorphism between the subset poset (2", C) and
the boolean strings poset (B™, <).

Now we prove that the Mobius function of the subset poset is u(I, J) = (—1)\ for
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I C J. We use induction on k = |J\I|. If k = 0, then I = J, so by definition, u(I, J) =1
and so the statement is true. Now let us assume that the statement is true for all non-
negative integers less than k. Then for all ¢ € N satisfying 0 < i < k, the interval [I, J]
contains (If) clements of B,, that are |I| + 1 element subsets of [n]. If K is such a subset,

then it follows from the induction hypothesis that u(I, K) = (—1)%. Therefore,
k—1 k ) N
wr.n == ¥ urk)=-3 (F)en=
Ke[l,J) =0

where the last inequality follows from the binomial expansion of (1—1)*, and we are done.

Problem 3:
Let f,g: 2" — R be real-valued functions on subsets of [n] such that g(J) = 35, f(1)
for every J C [n]. Prove using the Mébius inversion formula for the subset poset that

f(J) = ZIQJ<_1)|I\J| : Q(I)-

Solution 3:
Since g(J) = X5 f(I), we have

Dol T)gI) = > I, J) > f(K)

7 = X 10) ()
= 3 K = J]
— 1)),

where the third equality follows from the fact that u(I,J) # 0 if and only if J is a
maximal subset of I, and the fourth equality follows from the fact that the only K for
which K D Jand K =11is K = J.

Similar to the previous problem, here we can prove that (I, J) = (—=1)\l for I D J.
Using this, we have the required equality

F(I) = (=) g(1)
oJ

Problem 4:

For the divisibility poset ([n], <), where a < b iff a divides b, find the Mobius func-
tion yu(a,b) for a,b € [n]. Using that show that show that if g(m) = 3, ,, f(n), then
f(m) = X pe(m/n) - g(n), where p.(t) is the classical Mobius function defined as
pe(t) = (=1)%, if t is a product of k distinct primes, for & > 0, and is defined to be zero
otherwise.

Solution 4:
The Mobius function p(a, b) for the divisibility poset ([n], <) is given by:

1 if a =0,
p(a,b) =< (=1)% if b= apy - - py, for distinct primes py,. .., pr,
0 otherwise.



We prove it as follows: Let D,, be the poset over the set of divisors of n, where a < b iff
a | b. Suppose n = pit...pit is the product of ¢ primes. Then any divisor of n can be
expressed as multiset {plfl, o ph *}, and hence there is an isomorphism between D,, and
the poset obtained by the direct product p;*¥* x --- x p#*. Since the posets p;* are of
linear orders, so the corresponding Mobius function is

1, ifi=j
pp'p’) =1, ifi=j—1
0, otherwise

Given two divisors a = [; pi* and b =[], pf with a; < b; for all ¢, then we have,

(—=1)2:i=9) it b, € {a;, a; + 1}

0, otherwise

= p([Ipi T2 Hu P, i) {

and the desired equality follows.
Now, let S be the set of all divisors of m. Then we have

> ue(m/n)-g(n) =Y pe(m/n) - g(n)
nlm

=2 (Z’m) -9(n)

= a’b;:’abu(a,b) g (?)

= b%g (TZ) aeé%bu(a, b)
2o g (V)
=X () lb=1

where w(b) denotes the number of distinct prime factors of b.

Problem 5:

Let P = (S, <) be an n-element poset and x1,zs, ..., x, be a total ordering of S that
is a linear extension of P. Let I(P) denote the incidence algebra of P and recall the
homomorphism ¢ defined in class from [(P) to n X n matrices over the reals:

(IOZfl—)Mf

where the (7, 7)-th entry of My is f(x;,x;) for 1 < 4,j < n. The matrix My is upper
triangular.

e Write My = D—N where D is a diagonal matrix and N is a strictly upper triangular
matrix. That means, N is upper triangular and N(¢,7) = 0 for all ¢. Show that
N™ = 0.



e Show that ¢~ '(D) and ¢! (N) are defined in I(P).

e Show that ¢~1(D) has an inverse in I(P) if and only if D is invertible.

e Suppose D is invertible. Show that ¢~ '(D7'N) is defined, and D™'N = M is
strictly upper triangular.

e Show that (I—M)~'is I+ M+ M?+---+M"'. Hence prove that if D is invertible

there is a g € I(P) such that f* g = §, where 6 € I(P) is the identity element.
Solution 5:

e Since My is upper triangular, we can write it as My = D — N, where D is a
diagonal matrix and N is a strictly upper triangular matrix, i.e., D(i,5) = My (i, j)
if i = j and D(i, j) = 0 otherwise, while N(i,5) = M(i,7) if i < j and N(4,5) =0
otherwise. To show that N™ = 0, we use induction on n. For n = 1, N = N is
already strictly upper triangular and satisfies N'(i,4) = 0 for all i.

Now suppose N* = 0 for some k > 1. Then for any 1 < i,j < n with i < j, we
have

(N¥)(G ) = XN p)N(p.j) = > N*(i.p)N(p.j).
Since N* = 0, this sum is zero, so N¥*1(i,j) = 0 forall 1 < i,j < nwithi < j. Also,
since N is strictly upper triangular, N¥*1(i,i) = 0 for all 1 < i < n. Therefore,

N*+1' =0, and the claim follows by induction.

e To show that o= '(D) and ¢ (V) are defined in I(P), we need to show that there
exist unique functions gp, gy : S X S — R such that ¢(gp) = D and ¢(gn) = N.
For gp, we can define gp(z;,z;) = D(i,j) for all 1 < i, < n. This function is
clearly well-defined and unique, and its image under ¢ is D.

For gy, we can define gn(x;, z;) = N(4,j) for all 1 < i < j < n. This function is
also well-defined and unique, and its image under ¢ is N.
Therefore, ! (D) and ¢~ !(N) are defined in I(P).

e Suppose D is invertible. We want to show that ¢~!(D) has an inverse in I(P) if
and only if D is invertible. Suppose ¢ ~!(D) has an inverse h in I(P). Then we
have h * f = §, where ¢ is the identity element of I(P). Applying ¢ to both sides,
we get MMy = I,,, where I, is the n x n identity matrix.

Now consider the determinant of M. Since My is upper triangular, its determinant

is the product of its diagonal entries, which are the values f(z1, 1), f(x2, 22),. .., f(zn, ).
But these values are exactly the diagonal entries of D. Therefore, det(M;) =
det(D) # 0, so D is invertible.

Now we want to show that D being invertible is a sufficient condition for ¢~!(D) to
have an inverse in I(P). Let D™! be the inverse of D. Define g € I(P) as follows:

for any z,y € S,
(2.1) D™l w=y
T,y) =
PP w#y
Then ¢ is well-defined and belongs to I(P) since D is invertible.



To show that g is the inverse of p~1(D), we need to show that ¢(g* ¢~ (D)) =4
and ¢(¢ (D) x g) = 6. We will only show the first equation since the second one
follows by a similar argument.

Let f = ¢ (D). Then M; = D, so M,,; has diagonal entries equal to D™'D = I,
and all other entries equal to 0. Therefore, My,; = I, and ¢(g * f) = 6, as desired.

This shows that g is indeed the inverse of o ~!(D), and so ¢ ~!(D) has an inverse in
(p).

Suppose D is invertible. To show that ¢~1(D™'N) is defined, we need to show that
there exists an element f € I(P) such that o(f) = D™'N.

Let f(z,y) = D(z,2)"*N(z,y) for all x,y € S. Then we have
My (i, j) = f(xi,25) = D(xi, )7 N(i,25) = (D7'N) (3, 5)

for all 1 <4, j < n. Therefore, o(f) = DN and o= }(D7'N) is defined.

To show that D~'N = M is strictly upper triangular, note that for any 1 <1i < n,
we have

1
since N(i,7) = 0. Moreover, for 1 <1i < j < n, we have
o _ o o [l y)
M = (D'N = N =)

since f(z;,2;) = N(i,7), and D(i,i) # 0 since D is invertible. Therefore, D™'N =
M is strictly upper triangular.

Let M be as defined above, and let S = I — M. We will show that
Sh=T4+M+M+---+ M

Note that
SI+M+M+---+M" ) =I-M"

By the first part of this problem, we have N = 0, so
M" = (D'N)" =D 'N"=0.

Hence,
SUI+M+M* 4.+ M"Y =1.

Similarly, we have
(I+M+M+- -+ M HS =1,

and so
St=I+M+M+. - +M""

Since My = D — N is invertible, we know that I — M/ is also invertible. From the
previous part, we have that

(I—My) =T+ Mg+ M;+---+ Mp "



Let g(z,y) = D(z,2) 7= (—1)'M} for all z,y € S. Then we have

(f*9)(@,y) =D flx.2)g(zy)

z€eS
_ Zsf(x,z)D(z, 2) n:o(—l)’M}
_ ”ZOHy > (@ 2Dl )]
- "__0<—1>1<M}><w>y>

(I - M)~
=d(x,y)

Therefore, g is the inverse of f in I(P), and we have f % g = 0.



