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Throughout, for a statement P , we denote

[[P ]] =

1, if P is true
0, otherwise
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Problem 1:
Suppose P1 = (S1, ≺1) and P2 = (S2, ≺2) are finite posets. Define their product poset as
P (S1 × S2, ≺) where (a1, a2) ≺ (b1, b2) iff a1 ≺1 b1 and a2 ≺2 b2. Show that the Möbius
function µ of P is µ((a, b), (c, d)) = µ1(a, c) · µ2(b, d), where µi is the Möbius functions of
Pi, i = 1, 2.

Solution 1:
To show that the Möbius function µ of P is µ((a, b), (c, d)) = µ1(a, c) · µ2(b, d), we need
to verify that the equation holds for all pairs of elements (a, b), (c, d) ∈ S1 × S2 such that
(a, b) ≺ (c, d) and is equal to 0 if (a, b) ̸≺ (c, d).

First, we consider the case when (a, b) ≺ (c, d); we then have a ≺1 c and b ≺2 d, and
therefore, ∑

(a,b)≺(x,y)≺(c,d)
µ((x, y), (c, d)) =

∑
a≺1u≺1c

∑
b≺2v≺2d

µ((u, v), (c, d))

=
( ∑

a≺1u≺1c

µ1(u, c)
)

·

 ∑
b≺2v≺2d

µ2(v, d)


= µ1(a, c) · µ2(b, d),

Now, we consider the case where (a, b) ̸≺ (c, d). Then, there exists some (x, y) such that
(a, b) ≺ (x, y) ≺ (c, d). Since µ((x, y), (c, d)) ̸= 0, we have µ((a, b), (c, d)) = 0, which is
consistent with the formula µ((a, b), (c, d)) = µ1(a, c) ·µ2(b, d) since at least one of µ1(a, c)
and µ2(b, d) is 0.

Therefore, we have shown that the formula µ((a, b), (c, d)) = µ1(a, c) · µ2(b, d) holds
for all pairs of elements (a, b), (c, d) ∈ S1 × S2 in the product poset P (S1 × S2, ≺).

Problem 2:
Show that the subset poset (2[n], ⊆) is isomorphic to the boolean strings poset (Bn, ≺)
where B = {0, 1} is the boolean poset and Bn is its n-fold product. Hence, derive the
Möbius function of the subset poset to be µ(I, J) = (−1)|J\I| for I ⊆ J .

Solution 2:
To show that the subset poset (2[n], ⊆) is isomorphic to the boolean strings poset (Bn, ≺),
we will construct a bijection φ : 2[n] → Bn that preserves the order.

Let S ⊆ [n] be a subset of [n]. We can represent S as a binary string of length n by
setting the i-th bit to 1 if and only if i ∈ S, i.e., we define φ(S) = (b1, b2, . . . , bn), where
bi = 1 if i ∈ S and bi = 0 otherwise.

Clearly, φ is injective because no two distinct subsets of [n] have the same binary
representation. Furthermore, φ is surjective because any binary string of length n corre-
sponds to a unique subset of [n].

Now, we need to show that φ preserves the order, i.e., S ⊆ T if and only if φ(S) ≺
φ(T ). Suppose S ⊆ T . Then, for any i ∈ [n], if i ∈ S, then i ∈ T , which implies that the
i-th bit of φ(T ) is 1. Therefore, φ(S) ≺ φ(T ). On the other hand, if φ(S) ≺ φ(T ), then
there exists an index j ∈ [n] such that φ(S)j = 0 and φ(T )j = 1, where φ(S)j denotes
the j-th bit of φ(S). This implies that j ∈ T and j /∈ S, which implies that S ⊆ T .

Therefore, we have constructed an isomorphism between the subset poset (2[n], ⊆) and
the boolean strings poset (Bn, ≺).

Now we prove that the Möbius function of the subset poset is µ(I, J) = (−1)|J\I| for
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I ⊆ J . We use induction on k = |J \I|. If k = 0, then I = J , so by definition, µ(I, J) = 1
and so the statement is true. Now let us assume that the statement is true for all non-
negative integers less than k. Then for all i ∈ N satisfying 0 ≤ i < k, the interval [I, J ]
contains

(
k
i

)
elements of Bn that are |I| + 1 element subsets of [n]. If K is such a subset,

then it follows from the induction hypothesis that µ(I, K) = (−1)i. Therefore,

µ(I, J) = −
∑

K∈[I,J)
µ(I, K) = −

k−1∑
i=0

(
k

i

)
(−1)i = (−1)k

where the last inequality follows from the binomial expansion of (1−1)k, and we are done.

Problem 3:
Let f, g : 2[n] → R be real-valued functions on subsets of [n] such that g(J) = ∑

I⊇J f(I)
for every J ⊆ [n]. Prove using the Möbius inversion formula for the subset poset that
f(J) = ∑

I⊇J(−1)|I\J | · g(I).

Solution 3:
Since g(J) = ∑

I⊇J f(I), we have∑
I⊇J

µ(I, J)g(I) =
∑
I⊇J

µ(I, J)
∑
K⊇I

f(K)

=
∑

K⊇J

f(K)
∑

I⊆K,I⊇J

µ(I, J)

=
∑

K⊇J

f(K)[[K = J ]]

= f(J),

where the third equality follows from the fact that µ(I, J) ̸= 0 if and only if J is a
maximal subset of I, and the fourth equality follows from the fact that the only K for
which K ⊇ J and K = I is K = J .

Similar to the previous problem, here we can prove that µ(I, J) = (−1)|I\J | for I ⊇ J .
Using this, we have the required equality

f(J) =
∑
I⊇J

(−1)|I\J | · g(I)

Problem 4:
For the divisibility poset ([n], ≤), where a ≤ b iff a divides b, find the Möbius func-
tion µ(a, b) for a, b ∈ [n]. Using that show that show that if g(m) = ∑

n|m f(n), then
f(m) = ∑

n|m µc(m/n) · g(n), where µc(t) is the classical Möbius function defined as
µc(t) = (−1)k, if t is a product of k distinct primes, for k ≥ 0, and is defined to be zero
otherwise.

Solution 4:
The Möbius function µ(a, b) for the divisibility poset ([n], ≤) is given by:

µ(a, b) =


1 if a = b,

(−1)k if b = ap1 · · · pk for distinct primes p1, . . . , pk,

0 otherwise.
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We prove it as follows: Let Dn be the poset over the set of divisors of n, where a ≤ b iff
a | b. Suppose n = pk1

1 · · · pkt
t is the product of t primes. Then any divisor of n can be

expressed as multiset {pk1
1 , . . . , pkt

t }, and hence there is an isomorphism between Dn and
the poset obtained by the direct product p1

k1 × · · · × pt
kt . Since the posets pi

ki are of
linear orders, so the corresponding Möbius function is

µ(pi, pj) =


1, if i = j

−1, if i = j − 1
0, otherwise

Given two divisors a = ∏
i pai

i and b = ∏
i pbi

i with ai ≤ bi for all i, then we have,

µ(a, b) = µ(
∏

i

pai
i ,
∏

i

pbi
i ) =

∏
i

µ(pai
i , pbi

i ) =

(−1)
∑

i
(bi−ai), if bi ∈ {ai, ai + 1}

0, otherwise

and the desired equality follows.
Now, let S be the set of all divisors of m. Then we have∑

n|m
µc(m/n) · g(n) =

∑
n∈S

µc(m/n) · g(n)

=
∑
n∈S

µ
(

m

n
, m
)

· g(n)

=
∑

a,b∈S,a|b
µ(a, b) · g

(
m

a

)

=
∑
b∈S

g
(

m

b

) ∑
a∈S,a|b

µ(a, b)

=
∑
b∈S

g
(

m

b

) ω(b)∑
k=0

(−1)k

(
ω(b)

k

)

=
∑
b∈S

g
(

m

b

)
[[b = 1]]

= f(m),

where ω(b) denotes the number of distinct prime factors of b.

Problem 5:
Let P = (S, ≺) be an n-element poset and x1, x2, . . . , xn be a total ordering of S that
is a linear extension of P . Let I(P ) denote the incidence algebra of P and recall the
homomorphism φ defined in class from I(P ) to n × n matrices over the reals:

φ : f 7→ Mf

where the (i, j)-th entry of Mf is f(xi, xj) for 1 ≤ i, j ≤ n. The matrix Mf is upper
triangular.

• Write Mf = D−N where D is a diagonal matrix and N is a strictly upper triangular
matrix. That means, N is upper triangular and N(i, i) = 0 for all i. Show that
Nn = 0.
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• Show that φ−1(D) and φ−1(N) are defined in I(P ).

• Show that φ−1(D) has an inverse in I(P ) if and only if D is invertible.

• Suppose D is invertible. Show that φ−1(D−1N) is defined, and D−1N = M is
strictly upper triangular.

• Show that (I −M)−1 is I +M +M2 + · · ·+Mn−1. Hence prove that if D is invertible
there is a g ∈ I(P ) such that f ∗ g = δ, where δ ∈ I(P ) is the identity element.

Solution 5:

• Since Mf is upper triangular, we can write it as Mf = D − N , where D is a
diagonal matrix and N is a strictly upper triangular matrix, i.e., D(i, j) = Mf (i, j)
if i = j and D(i, j) = 0 otherwise, while N(i, j) = Mf (i, j) if i < j and N(i, j) = 0
otherwise. To show that Nn = 0, we use induction on n. For n = 1, N1 = N is
already strictly upper triangular and satisfies N1(i, i) = 0 for all i.
Now suppose Nk = 0 for some k ≥ 1. Then for any 1 ≤ i, j ≤ n with i < j, we
have

(Nk+1)(i, j) =
n∑

p=1
Nk(i, p)N(p, j) =

n∑
p=i+1

Nk(i, p)N(p, j).

Since Nk = 0, this sum is zero, so Nk+1(i, j) = 0 for all 1 ≤ i, j ≤ n with i < j. Also,
since N is strictly upper triangular, Nk+1(i, i) = 0 for all 1 ≤ i ≤ n. Therefore,
Nk+1 = 0, and the claim follows by induction.

• To show that φ−1(D) and φ−1(N) are defined in I(P ), we need to show that there
exist unique functions gD, gN : S × S → R such that φ(gD) = D and φ(gN) = N .
For gD, we can define gD(xi, xj) = D(i, j) for all 1 ≤ i, j ≤ n. This function is
clearly well-defined and unique, and its image under φ is D.
For gN , we can define gN(xi, xj) = N(i, j) for all 1 ≤ i < j ≤ n. This function is
also well-defined and unique, and its image under φ is N .
Therefore, φ−1(D) and φ−1(N) are defined in I(P ).

• Suppose D is invertible. We want to show that φ−1(D) has an inverse in I(P ) if
and only if D is invertible. Suppose φ−1(D) has an inverse h in I(P ). Then we
have h ∗ f = δ, where δ is the identity element of I(P ). Applying φ to both sides,
we get MhMf = In, where In is the n × n identity matrix.
Now consider the determinant of Mf . Since Mf is upper triangular, its determinant
is the product of its diagonal entries, which are the values f(x1, x1), f(x2, x2), . . . , f(xn, xn).
But these values are exactly the diagonal entries of D. Therefore, det(Mf ) =
det(D) ̸= 0, so D is invertible.
Now we want to show that D being invertible is a sufficient condition for φ−1(D) to
have an inverse in I(P ). Let D−1 be the inverse of D. Define g ∈ I(P ) as follows:
for any x, y ∈ S,

g(x, y) =

D−1, x = y

0, x ̸= y

Then g is well-defined and belongs to I(P ) since D is invertible.
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To show that g is the inverse of φ−1(D), we need to show that φ(g ∗ φ−1(D)) = δ
and φ(φ−1(D) ∗ g) = δ. We will only show the first equation since the second one
follows by a similar argument.
Let f = φ−1(D). Then Mf = D, so Mg∗f has diagonal entries equal to D−1D = In

and all other entries equal to 0. Therefore, Mg∗f = In and φ(g ∗ f) = δ, as desired.
This shows that g is indeed the inverse of φ−1(D), and so φ−1(D) has an inverse in
I(P ).

• Suppose D is invertible. To show that φ−1(D−1N) is defined, we need to show that
there exists an element f ∈ I(P ) such that φ(f) = D−1N .
Let f(x, y) = D(x, x)−1N(x, y) for all x, y ∈ S. Then we have

Mf (i, j) = f(xi, xj) = D(xi, xi)−1N(xi, xj) = (D−1N)(i, j)

for all 1 ≤ i, j ≤ n. Therefore, φ(f) = D−1N and φ−1(D−1N) is defined.
To show that D−1N = M is strictly upper triangular, note that for any 1 ≤ i ≤ n,
we have

(D−1N)(i, i) = 1
D(i, i)N(i, i) = 0

since N(i, i) = 0. Moreover, for 1 ≤ i < j ≤ n, we have

M(i, j) = (D−1N)(i, j) = 1
D(i, i)N(i, j) = f(xi, xj)

D(i, i)

since f(xi, xj) = N(i, j), and D(i, i) ̸= 0 since D is invertible. Therefore, D−1N =
M is strictly upper triangular.

• Let M be as defined above, and let S = I − M . We will show that

S−1 = I + M + M2 + · · · + Mn−1

Note that
S(I + M + M2 + · · · + Mn−1) = I − Mn.

By the first part of this problem, we have Nn = 0, so

Mn = (D−1N)n = D−1Nn = 0.

Hence,
S(I + M + M2 + · · · + Mn−1) = I.

Similarly, we have
(I + M + M2 + · · · + Mn−1)S = I,

and so
S−1 = I + M + M2 + · · · + Mn−1

Since Mf = D − N is invertible, we know that I − Mf is also invertible. From the
previous part, we have that

(I − Mf )−1 = I + Mf + M2
f + · · · + Mn−1

f .
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Let g(x, y) = D(x, x)∑n−1
i=0 (−1)iM i

f for all x, y ∈ S. Then we have

(f ∗ g)(x, y) =
∑
z∈S

f(x, z)g(z, y)

=
∑
z∈S

f(x, z)D(z, z)
n−1∑
i=0

(−1)iM i
f

=
n−1∑
i=0

(−1)i
∑
z∈S

f(x, z)D(z, z)M i
f

=
n−1∑
i=0

(−1)i(M i
f )(x, y)

= (I − Mf )−1

= δ(x, y).

Therefore, g is the inverse of f in I(P ), and we have f ∗ g = δ.
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