Discrete Mathematics Assignment 2

Nirjhar Nath BMC202239 nirjhar@cmi.ac.in

Problem 1:

Let *w* be any binary string of length *k*. For $n \geq k$, count the number of binary strings of length *n* that do not contain *w* as a subsequence.

Solution 1:

Let $f(n, k)$ denote the required number of binary strings of length n, that do not contain *w* as a subsequence. Suppose the first bit of *w* is *b*, then if *n* begins with *b*, the required number of binary strings is equal to the number of binary strings of length *n* − 1 (first bit removed) that contains $w - b$ (*b* removed) as a subsequence; and if *n* begins with \overline{b} (if $b = 0$, then $\bar{b} = 1$ and if $b = 1$, then $\bar{b} = 0$, the required number of binary strings is equal to the binary strings of length *n*−1 (first bit removed) that contains *w* as a subsequence. Therefore, we have the following recurrence relation:

$$
f(n,k) = f(n-1,k-1) + f(n-1,k)
$$

We claim that

$$
f(n,k) = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{k-1} \tag{1}
$$

We prove it by induction on $n + k$. We have the following base cases. For $n + k = 2$, we have $f(1, 1) = 1$. For $n + k = 3$, we have $f(2, 1) = 1$. For $n + k = 4$, we have $f(3, 1) = 1$ and $f(2, 2) = 3$, all of which satisfy equation [\(1\)](#page-1-0). Suppose that equation (1) is true upto all $n + k - 1$. Then we have,

$$
f(n,k) = f(n-1,k-1) + f(n-1,k)
$$

= $\left({n-1 \choose 0} + {n-1 \choose 1} + \dots + {n-1 \choose k-2} \right) + \left({n-1 \choose 0} + {n-1 \choose 1} + \dots + {n-1 \choose k-1} \right)$
= ${n-1 \choose 0} + \left({n-1 \choose 0} + {n-1 \choose 1} \right) + \dots + \left({n-1 \choose k-2} + {n-1 \choose k-1} \right)$
= ${n \choose 0} + {n \choose 1} + {n \choose 2} + \dots + {n \choose k-1}$

and we are done. Therefore, the number of binary strings of length *n* that do not contain *w* as a subsequence is given by

$$
f(n,k) = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{k-1}
$$

Problem 2:

Show that the n^{th} Catalan number $\frac{1}{n+1} \binom{2n}{n}$ *n* counts the binary strings of length 2*n* that do not contain any of the following strings as subsequences:

$$
1^{n+1}, 1^n 0, 1^{n-1} 0^2, \ldots, 1^i 0^{n+1-i}, \ldots, 10^n, 0^{n+1}
$$

Solution 2:

Call a binary string *bad* if it contains one of the given strings as subsequence. We will find a bijection between bad strings and non-balanced parentheses, where 0's can be replaced with open parentheses "(" and 1's can be replaced with closed parentheses ")".

Consider a bad string of length 2*n*. Assume, to the contrary, that the parentheses expression corresponding to this binary string is balanced. Since the string is bad, so it

contains a subsequence of the form $1^{i}0^{n+1-i}$. Now since the parentheses expression is balanced, so for the *i* closing parentheses (corresponding to 1), there are *i* open parentheses (corresponding to 1) before it. And similarly for the $(n+1-i)$ open parentheses, there are $(n+1-i)$ closed parentheses after it. This results to a total of $2i+2(n+1-i) = 2n+2$ parentheses which is greater than 2*n*, a contradiction.

Conversely, we begin with a non-balanced parentheses expression of size 2*n*. Thus, at any index k, the number of closed parentheses, at indices $\leq k$, is greater than or equal to the number of open parentheses, i.e., at any index *k* in the corresponding binary string representation, the number of 1's, at indices $\leq k$, is greater than or equal to the number of 0's. We shall prove that this results in a bad string. Suppose at some index, the number of 1's upto that index from the left is *i*, then there are at most $(i - 1)$ number of 1's to the left of that index and so there are at least $n - (i - 1) = n + 1 - i$ number of 0's to the right of that index. Thus, we have the string $1^{i}0^{n+1-i}$ as a subsequence of this string and hence it is a bad string.

Thus, we have proved the claimed bijection and since the number of non-balanced parentheses expressions of length 2*n* (which is also the same as the number of balanced parentheses expressions of length 2*n*; just interchanging positions of 0's with 1's and vice versa) is equal to the n^{th} Catalan number $\frac{1}{n+1} \binom{2n}{n}$ *n*), so we are done. \Box

Problem 3:

Solve the following recurrence relation by relating it to a problem solved in class (or otherwise):

$$
a_0 = 1
$$

\n
$$
a_n = na_{n-1} + (-1)^n \text{ for } n \ge 1.
$$

Solution 3:

Consider the exponential generating function of the given recurrence. It is given by

$$
\varphi(x) = \sum_{n \ge 0} a_n \frac{x^n}{n!}
$$

where $a_n = n! \times \text{coefficient of } x^n$ in $\varphi(x)$. Now, we have,

$$
\varphi(x) = a_0 + \sum_{n\geq 1} a_n \frac{x^n}{n!}
$$

= $1 + \sum_{n\geq 1} (na_{n-1} + (-1)^n) \frac{x^n}{n!}$
= $1 + x \sum_{n\geq 1} a_{n-1} \frac{x^{n-1}}{(n-1)!} + \sum_{n\geq 1} (-1)^n \frac{x^n}{n}$
= $1 + x \sum_{n\geq 0} a_n \frac{x^n}{n!} + (e^{-x} - 1)$
= $x\varphi(x) + e^{-x}$

Rearranging, we have

$$
\varphi(x) = \frac{e^{-x}}{1 - x}
$$

The series expansion of e^{-x} is given by

$$
e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots
$$

and that of $\frac{1}{1-x}$ is given by

$$
\frac{1}{1-x} = x + x^2 + x^3 + \dotsb
$$

The coefficient of x^k in the expansion of $\frac{1}{1-x}$ is 1 and that of x^{n-k} in the expansion of e^{-x} is $\frac{(-1)^k}{k!}$, and multiplying both the coefficients and taking sum over all $k \geq 0$, we get the coefficient of x^n in $\varphi(x)$. Therefore,

$$
a_n = n! \sum_{k \ge 0} \frac{(-1)^k}{k!}
$$

which is equal to D_n , the number of derangements on *n* elements. \Box

Problem 4:

Give a combinatorial proof for the principle of inclusion exclusion

$$
\left|\bigcap_{i=1}^{n} \overline{A_i}\right| = \sum_{I} (-1)^{|I|} |A_I|
$$

by first moving all the negative terms in the summation to the LHS so that the equation assumes the form $A = B$, where both A and B are now sums of positive terms. Then define suitable sets whose sizes are these positive terms and give a bijective correspondence that will prove the equation.

Solution 4:

Consider a set elements (say *A*), each possessing a subset of properties [*n*]. Let *A^I* denote the set of elements having all the properties of *I* for any subset $I \subseteq [n]$.

Let $S := \{(a, J) \mid a \in A, J \subseteq \text{set of properties of } a\}$. Call a pair (a, J) even or odd according as |*J*| is even or odd.

Observe that for a fixed subset $I \subseteq [n]$, (a, I) is a legitimate pair if and only if $a \in A_I$. For any $a \in A$, let s_a be its smallest property. Then the mapping $f : S \to S$ defined by

$$
f(a, J) = \begin{cases} (a, J \cup s_a), & \text{if } s_a \notin J \\ (a, J \setminus s_a), & \text{if } s_a \in J \end{cases}
$$

is a parity changing involution defined everywhere expect on pairs (a, ϕ) with $a \in A$ having no property. Then the number of odd pairs of S is equal to the number of even pairs of S which are not of the above form. Let P be the set of pairs (a, ϕ) for which a has no property. Thus, moving all the negative terms in the summation to the LHS and keeping the positive terms in the RHS, we get

$$
\sum_{|I| \text{ odd}} |A_I| + |\mathcal{P}| = \sum_{|I| \text{ even}} |A_I|
$$

Clearly, the number of pairs (a, ϕ) for which *a* has no property is equal to the set of elements of *A* having no property. Therefore,

$$
|\mathcal{P}| = \left| \bigcap_{i=1}^{n} \overline{A_i} \right|
$$

and hence,

$$
\sum_{|I| \text{ odd}} |A_I| + \left| \bigcap_{i=1}^n \overline{A_i} \right| = \sum_{|I| \text{ even}} |A_I|
$$

This gives the required formula

$$
\left| \bigcap_{i=1}^{n} \overline{A_i} \right| = \sum_{I} (-1)^{|I|} |A_I|
$$

□

Problem 5:

Solve the recurrence relation $a_r + 3a_{r-1} + 2a_{r-2} = f(r)$ where $f(r) = 1$ for $r = 2$ and $f(r) = 0$ otherwise. Assume the boundary conditions $a_0 = a_1 = 0$. **Solution 5:**

Consider the generating function of the given recurrence. It is given by

$$
\varphi(x) = \sum_{n \ge 0} a_n x^n
$$

Now, $f(2) = 1 \implies a_2 + 3a_1 + 2a_0 = 1 \implies a_2 = 1$. Also, for $r \geq 2$, it is given that $f(r) = a_r + 3a_{r-1} + 2a_{r-2} = 0.$

Using the values of a_0, a_1, a_2 and a_n for $n \geq 3$ in the generating function, we have

$$
\varphi(x) = x^2 + \sum_{n\geq 3} (-3a_{n-1} - 2a_{n-2})x^n
$$

= $x^2 - 3 \sum_{n\geq 3} a_{n-1}x^n - 2 \sum_{n\geq 3} a_{n-2}x^n$
= $x^2 - 3x \sum_{n\geq 3} a_{n-1}x^{n-1} - 2x^2 \sum_{n\geq 3} a_{n-2}x^{n-2}$
= $x^2 - 3x \sum_{n\geq 0} a_{n-1}x^{n-1} - 2x^2 \sum_{n\geq 0} a_{n-2}x^{n-2}$
= $x^2 - 3x\varphi(x) - 2x^2\varphi(x)$

Rearranging terms, we have

$$
\varphi(x) = \frac{x^2}{1+3x+2x^2} = \frac{x^2}{(1+x)(1+2x)} = x^2 \left[\frac{-1}{1+x} + \frac{2}{1+2x} \right]
$$

The series expansion of $\frac{1}{1+x}$ is given by

$$
\frac{1}{1+x} = \frac{1}{1-(-x)} = 1 + (-x) + (-x)^2 + (-x)^3 + \cdots
$$

and that of $\frac{1}{1+2x}$ is given by

$$
\frac{1}{1+2x} = \frac{1}{1-(-2x)} = 1 + (-2x) + (-2x)^2 + (-2x)^3 + \cdots
$$

The coefficient of x^{n-2} in $\frac{-1}{1+x}$ is $-(-1)^{n-2} = -(-1)^n$ and the coefficient of x^{n-2} in $\frac{2}{1+2x}$ is $2(-2)^{n-2} = 2^{n-1}(-1)^n$. Therefore, we have

$$
a_n = -(-1)^n + 2^{n-1}(-1)^n = (2^{n-1} - 1)(-1)^n
$$
 for $n \ge 2$

Problem 6:

Gossip is spread among *r* people via telephone. In a phone call between two people *A* and B , they exchange all the gossip they have heard so far. Let a_r denote the minimum number of phone calls so that all the gossip will be known to everyone. Show that $a_2 = 1, a_3 = 3, a_4 = 4$. Then show that $a_r \le a_{r-1} + 2$. Finally, show that for $n \ge 4$, $a_r \leq 2r - 4.$

Solution 6:

For $r = 2$, one call is required and enough to share all the gossip, i.e., $a_2 = 1$. To show that $a_3 = 3$, assume there are three people P_1 , P_2 and P_3 . Let P_1 and P_2 share their gossip via one phone call, then if P_2 and P_3 share their gossip via one more phone call, then P_2 and P_3 get to know all the gossip. Now one more phone call, either between P_1 and P_2 or P_1 and P_3 , is required and enough for all the gossip to be known to everyone. So, $a_3 = 3$. Now to show that $a_4 = 4$, assume there are four people P_1 , P_2 , P_3 and P_4 . Let P_1 and P_2 share their gossip via one phone call and P_3 and P_4 share their gossip via another phone call. Then P_1 and P_3 can make a call and P_2 and P_4 can make another phone call so that the gossip is known to everyone. This gives $a_4 \leq 4$. We shall prove than in all other possibilities (here the order P_1, P_2, P_3, P_4 is not important), the number of phone calls is ≥ 4 . Suppose P_1 and P_2 share their gossip and one of them (say P_2) shares it with P_3 , then if P_3 shares it with P_1 , then P_4 needs to know all the gossip of P_1, P_2, P_3 via at least one phone call and then for P_4 to pass on his gossip to others, he needs to make a number of calls exceeding 4, so we stop. Suppose P_3 shares the gossip with P_4 instead of P_1 , then P_3 and P_4 get to know all the gossip, so to pass the gossip to P_1 and P_2 , they need to make at least two more calls, exceeding 4. Thus, $a_4 = 4$.

Suppose a set of people $P_1, P_2, \ldots, P_{r-1}$ need a minimum of a_{r-1} phone calls (with P_1 making the first call) so that everyone knows all the gossip. Then, if a new person P_r is included, we can start with P_r making a phone call with P_1 , and then the phone calls among the $r - 1$ people continues so that everyone $(P_1, P_2, \ldots, P_{r-1})$ knows all gossip in a_{r-1} phone calls. Now for P_r to know all the gossip, any one of $P_1, P_2, \ldots, P_{r-1}$ can make a call with P_r and share the gossip. So, $a_r \leq a_{r-1} + 2$.

We show that $a_r \leq 2r - 4$ by induction. We have, $a_4 = 4 = 2 \times 4 - 4$. Assuming that $a_r \leq 2r - 4$ is true for some $r \geq 4$, then by the previous result, we have

$$
a_{r+1} \le a_r + 2 \le 2r - 4 + 2 = 2(r+1) - 4
$$

and hence by induction, we have established that $a_r \leq 2r - 4$ for $n \geq 4$. □