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Problem 1:
Let w be any binary string of length k. For n ≥ k, count the number of binary strings of
length n that do not contain w as a subsequence.

Solution 1:
Let f(n, k) denote the required number of binary strings of length n, that do not contain
w as a subsequence. Suppose the first bit of w is b, then if n begins with b, the required
number of binary strings is equal to the number of binary strings of length n − 1 (first
bit removed) that contains w − b (b removed) as a subsequence; and if n begins with b (if
b = 0, then b = 1 and if b = 1, then b = 0), the required number of binary strings is equal
to the binary strings of length n−1 (first bit removed) that contains w as a subsequence.
Therefore, we have the following recurrence relation:

f(n, k) = f(n − 1, k − 1) + f(n − 1, k)

We claim that
f(n, k) =

(
n

0

)
+
(

n

1

)
+
(

n

2

)
+ · · · +

(
n

k − 1

)
(1)

We prove it by induction on n + k. We have the following base cases. For n + k = 2, we
have f(1, 1) = 1. For n + k = 3, we have f(2, 1) = 1. For n + k = 4, we have f(3, 1) = 1
and f(2, 2) = 3, all of which satisfy equation (1). Suppose that equation (1) is true upto
all n + k − 1. Then we have,

f(n, k) = f(n − 1, k − 1) + f(n − 1, k)

=
((

n − 1
0

)
+
(

n − 1
1

)
+ · · · +

(
n − 1
k − 2

))
+
((

n − 1
0

)
+
(

n − 1
1

)
+ · · · +

(
n − 1
k − 1

))

=
(

n − 1
0

)
+
((

n − 1
0

)
+
(

n − 1
1

))
+ · · · +

((
n − 1
k − 2

)
+
(

n − 1
k − 1

))

=
(

n

0

)
+
(

n

1

)
+
(

n

2

)
+ · · · +

(
n

k − 1

)

and we are done. Therefore, the number of binary strings of length n that do not contain
w as a subsequence is given by

f(n, k) =
(

n

0

)
+
(

n

1

)
+
(

n

2

)
+ · · · +

(
n

k − 1

)

□
Problem 2:
Show that the nth Catalan number 1

n+1

(
2n
n

)
counts the binary strings of length 2n that

do not contain any of the following strings as subsequences:

1n+1, 1n0, 1n−102, . . . , 1i0n+1−i, . . . , 10n, 0n+1

Solution 2:
Call a binary string bad if it contains one of the given strings as subsequence. We will find
a bijection between bad strings and non-balanced parentheses, where 0’s can be replaced
with open parentheses “(” and 1’s can be replaced with closed parentheses “)”.

Consider a bad string of length 2n. Assume, to the contrary, that the parentheses
expression corresponding to this binary string is balanced. Since the string is bad, so it
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contains a subsequence of the form 1i0n+1−i. Now since the parentheses expression is bal-
anced, so for the i closing parentheses (corresponding to 1), there are i open parentheses
(corresponding to 1) before it. And similarly for the (n + 1 − i) open parentheses, there
are (n+1−i) closed parentheses after it. This results to a total of 2i+2(n+1−i) = 2n+2
parentheses which is greater than 2n, a contradiction.

Conversely, we begin with a non-balanced parentheses expression of size 2n. Thus, at
any index k, the number of closed parentheses, at indices ≤ k, is greater than or equal to
the number of open parentheses, i.e., at any index k in the corresponding binary string
representation, the number of 1’s, at indices ≤ k, is greater than or equal to the number
of 0’s. We shall prove that this results in a bad string. Suppose at some index, the
number of 1’s upto that index from the left is i, then there are at most (i − 1) number of
1’s to the left of that index and so there are at least n − (i − 1) = n + 1 − i number of
0’s to the right of that index. Thus, we have the string 1i0n+1−i as a subsequence of this
string and hence it is a bad string.

Thus, we have proved the claimed bijection and since the number of non-balanced
parentheses expressions of length 2n (which is also the same as the number of balanced
parentheses expressions of length 2n; just interchanging positions of 0’s with 1’s and vice
versa) is equal to the nth Catalan number 1

n+1

(
2n
n

)
, so we are done. □

Problem 3:
Solve the following recurrence relation by relating it to a problem solved in class (or
otherwise):

a0 = 1
an = nan−1 + (−1)n for n ≥ 1.

Solution 3:
Consider the exponential generating function of the given recurrence. It is given by

φ(x) =
∑
n≥0

an
xn

n!

where an = n! × coefficient of xn in φ(x). Now, we have,

φ(x) = a0 +
∑
n≥1

an
xn

n!

= 1 +
∑
n≥1

(nan−1 + (−1)n)xn

n!

= 1 + x
∑
n≥1

an−1
xn−1

(n − 1)! +
∑
n≥1

(−1)n xn

n

= 1 + x
∑
n≥0

an
xn

n! + (e−x − 1)

= xφ(x) + e−x

Rearranging, we have
φ(x) = e−x

1 − x
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The series expansion of e−x is given by

e−x = 1 − x

1! + x2

2! − x3

3! + · · ·

and that of 1
1−x

is given by

1
1 − x

= x + x2 + x3 + · · ·

The coefficient of xk in the expansion of 1
1−x

is 1 and that of xn−k in the expansion of
e−x is (−1)k

k! , and multiplying both the coefficients and taking sum over all k ≥ 0, we get
the coefficient of xn in φ(x). Therefore,

an = n!
∑
k≥0

(−1)k

k!

which is equal to Dn, the number of derangements on n elements. □

Problem 4:
Give a combinatorial proof for the principle of inclusion exclusion∣∣∣∣∣

n⋂
i=1

Ai

∣∣∣∣∣ =
∑

I

(−1)|I||AI |

by first moving all the negative terms in the summation to the LHS so that the equation
assumes the form A = B, where both A and B are now sums of positive terms. Then
define suitable sets whose sizes are these positive terms and give a bijective correspondence
that will prove the equation.
Solution 4:
Consider a set elements (say A), each possessing a subset of properties [n]. Let AI denote
the set of elements having all the properties of I for any subset I ⊆ [n].

Let S := {(a, J) | a ∈ A, J ⊆ set of properties of a}. Call a pair (a, J) even or odd
according as |J | is even or odd.

Observe that for a fixed subset I ⊆ [n], (a, I) is a legitimate pair if and only if a ∈ AI .
For any a ∈ A, let sa be its smallest property. Then the mapping f : S → S defined

by

f(a, J) =

(a, J ∪ sa), if sa ̸∈ J

(a, J \ sa), if sa ∈ J

is a parity changing involution defined everywhere expect on pairs (a, ϕ) with a ∈ A
having no property. Then the number of odd pairs of S is equal to the number of even
pairs of S which are not of the above form. Let P be the set of pairs (a, ϕ) for which a
has no property. Thus, moving all the negative terms in the summation to the LHS and
keeping the positive terms in the RHS, we get∑

|I| odd
|AI | + |P| =

∑
|I| even

|AI |

Clearly, the number of pairs (a, ϕ) for which a has no property is equal to the set of
elements of A having no property. Therefore,

|P| =
∣∣∣∣∣

n⋂
i=1

Ai

∣∣∣∣∣
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and hence, ∑
|I| odd

|AI | +
∣∣∣∣∣

n⋂
i=1

Ai

∣∣∣∣∣ =
∑

|I| even
|AI |

This gives the required formula ∣∣∣∣∣
n⋂

i=1
Ai

∣∣∣∣∣ =
∑

I

(−1)|I||AI |

□
Problem 5:
Solve the recurrence relation ar + 3ar−1 + 2ar−2 = f(r) where f(r) = 1 for r = 2 and
f(r) = 0 otherwise. Assume the boundary conditions a0 = a1 = 0.
Solution 5:
Consider the generating function of the given recurrence. It is given by

φ(x) =
∑
n≥0

anxn

Now, f(2) = 1 =⇒ a2 + 3a1 + 2a0 = 1 =⇒ a2 = 1. Also, for r ≥ 2, it is given that
f(r) = ar + 3ar−1 + 2ar−2 = 0.
Using the values of a0, a1, a2 and an for n ≥ 3 in the generating function, we have

φ(x) = x2 +
∑
n≥3

(−3an−1 − 2an−2)xn

= x2 − 3
∑
n≥3

an−1x
n − 2

∑
n≥3

an−2x
n

= x2 − 3x
∑
n≥3

an−1x
n−1 − 2x2 ∑

n≥3
an−2x

n−2

= x2 − 3x
∑
n≥0

an−1x
n−1 − 2x2 ∑

n≥0
an−2x

n−2

= x2 − 3xφ(x) − 2x2φ(x)

Rearranging terms, we have

φ(x) = x2

1 + 3x + 2x2 = x2

(1 + x)(1 + 2x) = x2
[ −1
1 + x

+ 2
1 + 2x

]

The series expansion of 1
1+x

is given by

1
1 + x

= 1
1 − (−x) = 1 + (−x) + (−x)2 + (−x)3 + · · ·

and that of 1
1+2x

is given by

1
1 + 2x

= 1
1 − (−2x) = 1 + (−2x) + (−2x)2 + (−2x)3 + · · ·

The coefficient of xn−2 in −1
1+x

is −(−1)n−2 = −(−1)n and the coefficient of xn−2 in 2
1+2x

is 2(−2)n−2 = 2n−1(−1)n. Therefore, we have

an = −(−1)n + 2n−1(−1)n = (2n−1 − 1)(−1)n for n ≥ 2
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□
Problem 6:
Gossip is spread among r people via telephone. In a phone call between two people A
and B, they exchange all the gossip they have heard so far. Let ar denote the minimum
number of phone calls so that all the gossip will be known to everyone. Show that
a2 = 1, a3 = 3, a4 = 4. Then show that ar ≤ ar−1 + 2. Finally, show that for n ≥ 4,
ar ≤ 2r − 4.
Solution 6:
For r = 2, one call is required and enough to share all the gossip, i.e., a2 = 1. To show
that a3 = 3, assume there are three people P1, P2 and P3. Let P1 and P2 share their
gossip via one phone call, then if P2 and P3 share their gossip via one more phone call,
then P2 and P3 get to know all the gossip. Now one more phone call, either between P1
and P2 or P1 and P3, is required and enough for all the gossip to be known to everyone.
So, a3 = 3. Now to show that a4 = 4, assume there are four people P1, P2, P3 and P4.
Let P1 and P2 share their gossip via one phone call and P3 and P4 share their gossip via
another phone call. Then P1 and P3 can make a call and P2 and P4 can make another
phone call so that the gossip is known to everyone. This gives a4 ≤ 4. We shall prove
than in all other possibilities (here the order P1, P2, P3, P4 is not important), the number
of phone calls is ≥ 4. Suppose P1 and P2 share their gossip and one of them (say P2)
shares it with P3, then if P3 shares it with P1, then P4 needs to know all the gossip of
P1, P2, P3 via at least one phone call and then for P4 to pass on his gossip to others, he
needs to make a number of calls exceeding 4, so we stop. Suppose P3 shares the gossip
with P4 instead of P1, then P3 and P4 get to know all the gossip, so to pass the gossip to
P1 and P2, they need to make at least two more calls, exceeding 4. Thus, a4 = 4.

Suppose a set of people P1, P2, . . . , Pr−1 need a minimum of ar−1 phone calls (with P1
making the first call) so that everyone knows all the gossip. Then, if a new person Pr

is included, we can start with Pr making a phone call with P1, and then the phone calls
among the r − 1 people continues so that everyone (P1, P2, . . . , Pr−1) knows all gossip in
ar−1 phone calls. Now for Pr to know all the gossip, any one of P1, P2, . . . , Pr−1 can make
a call with Pr and share the gossip. So, ar ≤ ar−1 + 2.

We show that ar ≤ 2r − 4 by induction. We have, a4 = 4 = 2 × 4 − 4. Assuming that
ar ≤ 2r − 4 is true for some r ≥ 4, then by the previous result, we have

ar+1 ≤ ar + 2 ≤ 2r − 4 + 2 = 2(r + 1) − 4

and hence by induction, we have established that ar ≤ 2r − 4 for n ≥ 4. □
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