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Problem 1:
Starting from N x N is countable, which we showed in class, show that the set of all
rational numbers is countable.

Solution 1:
We prove the following lemma first.

Lemma 1.1: If there exists a surjection from a countable set to a set A, then A is
countable or finite.

Proof: Suppose B is countable and there exists a surjection f : B — A. Then for
each element a € A, there exists an element b, € B such that f(b,) = a. The
association a — b, is an injection because

ai, a2 € A and bal = baz = a1 = f(ba1) = f(b(m) = a2

Define g : A — B by g(a) = b,. Then g(A) C B and since B is countable, so g(A)
is countable or finite. Since g is a bijection between A and g(A), so A is countable
or finite.

Define h : N x N — Q% by g(m,n) = m/n. Since every positive rational number can
be written as a quotient of natural numbers, so g is surjective. Since N x N is countable
(as showed in class), it follows from Lemma 1.1 that the set of positive rational numbers,
Q™" is countable. Now, suppose that the positive rational numbers are enumerated as

{0,7(1),7(2),7(3),...}. Then we can define k : N — Q as

0, ifn=1
k(n) = qr(%), if n is even

—r("5), if nis odd,n # 1

This is an injection because we have enumerated Q* so that r(i) = r(j) = i = j.
Also, it is a surjection because for any n # 1 and r(n) > 0, the pre-image of r(n) and
—r(n) are 2n and 2n + 1 respectively (pre-image of 0 is 1). Therefore, k is a bijection
and hence Q is countable. Il

Problem 2:
If Ay, Ay, ..., Ay are countable sets then show that A; x Ay x --- x A, is countable.

Solution 2:
We use induction on k. But first we prove the following lemmas.

Lemma 2.1: If there exists an injection from a set A to a countable set, then A is
countable or finite.

Proof: Suppose B is countable and there exists an injection k : A — B, then we
can define a bijection k' : A — k(A) by setting k’'(z) = k(x) for every x € A. Since
k(A) C B and B is countable, so k(A) is countable or finite. Since &’ is a bijection
between A and k(A), so A is countable or finite.




Lemma 2.2: If A and B are countable sets, then A x B is countable.

Proof: Since A and B are countable sets, so there exist bijections f : N — A and
g : N — B. We can enumerate the elements of A and B as {f(1), f(2),...} and
{9(1),9(2),...} respectively. Then, A x B = {(f(4), f(j)) | 4,5 € N}, which is an
infinite set. Now we define h : A x B — N by h(f(i), f(j)) = 2'3/. This is an
injection because for i1, is, j1, jo € N,

213N =223 = iy =iy, j1 = jo = (f(i1),f(j1)) = (f(i2), f(j2))
= h(f(ir), f(J1)) = R(f(i2), f(J2))

Therefore, using Lemma 2.1, we have A x B is countable.

Let P, := A; x Ay x --- x A,. We have, P, = A; is countable. Suppose that
P._1=A; x Ay X --+ X Aj_1 is countable. Then P, = P,_; X Ay, where P,_; and A, are
countable sets, and hence by the Lemma 2.2, P, is countable. Therefore we have proved
by induction that if Ay, As,..., Ay are countable sets then P, = A; x Ay X -+ X Ay is
countable. O

Problem 3:
Is the set of all finite subsets of N countable? Justify your answer with proof.

Solution 3:

Yes, the set of all finite subsets of N is countable. Let S be the set of all finite subsets
of N. To prove this, let Ay = {¢} and for n = 1,2,3,..., let A, := set of subsets of N
whose largest element is n. Then,

s=J 4,
n=1

i.e., S is expressed as a countable union of finite sets, and hence countable.

Problem 4:

What is the dimension of the reals, R, as a vector space over the field of rationals, Q7
Justify your answer with a proof.

Solution 4:

The dimension of R as a vector space over Q, is infinite. To prove this, we assume, to the
contrary, that the dimension of R as a vector space over Q is finite and let vy, v9,...,v,
be a basis. Therefore, for any x € R, there exist unique aq, as, ..., a, € Q such that

T = a1U1 + U2 + - - - + a, U,
i.e., the map Q" — R that takes (aj, as,...,a,) = ajv; + agvy + - - - + a,v, is a bijection,
which implies that Q™ and R have the same cardinality. From the results of Problem

1 and 2, we have Q" = Q x Q x --- x Q (n times) is countable, but R is uncountable
(proved in class), which is a contradiction. d

Problem 5:
Give an explicit injective map from R x R — R.

Solution 5:



Any real number in (0,1) can be written in the form 0.x;29 ..., where x;’s and y;’s are
digits (including 0’s). We define the map f : (0,1) x (0,1) — (0, 1) such that

f(O.alag N ,O.b1b2 ce ) = O.a1b1a2b2 ce

To make this function well-defined, we avoid decimal expansions that end with infinite
successive 9’s. To prove that it is injective, we consider any

(z,y) = (0.x129 ..., 0012, ... ), (P,q) = (0.p1p2...,0.q1q2,...) € (0,1) x (0,1)

Then

flx,y) = f(p,q) = 0.x1p1%2y2 -+ = 0.p1qup2go - - -
= 1, =p,ui=¢VieN = (z,y) = (p,q)

Therefore, f is injective. Now, as in Problem 6, define g : (0,1) — R such that

o(z) = tan (w (w - ;) )

which is bijective (as proved in Solution 6). Therefore, we can define the required function
as h: R x R — R such that

hz,y) =go f(g7 ' (2),97' W)
which is injective as f is injective and g, g~! are bijective. U

Problem 6:
Give an explicit bijection from the open interval (0, 1) to the reals R.

Solution 6:
We define g : (0,1) — R such that

Then for x # %,

g (z) = msec? (7? (33 — ;) ) > 0

and for z = 3, ¢'(z) = 0 and hence g is strictly increasing in the interval (0, 1). Therefore,

g is injective. Also, every y € R has a pre-image z such that

1 1
= Ztan! Z
T 7Tan (y)—|—2

which should lie in (0, 1). This is clear because the range of tan™'(y) is (—%, 5) and hence
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Therefore, ¢ is also surjective and hence g is the required bijection. O

Problem 7:
What is the cardinality of the set of all continuous functions from R — R? Justify with
proof.

Solution 7:

We denote by C°, the set of all continuous functions from R to R. For every ¢ € R,
we can define a function f, : R — R such that for each x € R, f.(x) = ¢ so that the
association ¢ — f. is an injection. Therefore, |R| < |C°|. Now let {¢i,qq,...} be an
enumeration of the rational numbers and let § be the set of sequences of real numbers.
Then the association f — {f(g,)}5, is an injection. This is because for any = € R,
3 {z,,} € Q such that x,, — = as m — oo (this is possible because Q is dense in R).
Therefore, if f, g are continuous, then f(z,,) — f(z) and g(z,,) = g(z) as m — oc.
Thus, f(rm) = g(rm) Ym = f(x) = g(z) (by uniqueness of limit) and hence we proved
that the above association is an injection. Therefore, |C°| < |S|. Let Fy be the set of
all functions from N to R, then we have |S| = |Fy|. This is because given any sequence
{a,}2,, we can just define f(n) = a,. Since every real number can be written as a
binary expansion, so we have Fy has the same cardinality as that of the set of functions
from N to (the set of functions from N to {0, 1}), which has the same cardinality as that
of the set of functions from N x N to {0, 1}, which has the same cardinality as that of the
set of functions from N to {0, 1}. But since every real number can be written as a binary
expansion, so the of the set of functions from N to {0, 1} is same as that of R. Therefore,
|C°| < |R|. Hence, by Cantor-Schroeder-Bernstein’s theorem, we get |C°| = |R], i.e., the
cardinality of the set of all continuous functions from R to R is same as that of R.

Problem 8:
What is the cardinality of the set of all bijections from N — N? Justify your answer with
a proof.

Solution 8:

Let S be the set of all bijections from N to N. Consider the set
P:={(2n—1,2n):n €N}
For each subset A C P, define f4 : N — N

n —1, if nis odd and an element of some pair of A
fa(n) =<n+1, ifniseven and an element of some pair of A

n, ifkdUA

Clearly, there exists a bijection between P and N, so |P| = |[N| = Rj. Now, each of the
2% subsets of N defines a distinct bijection f4 from N to N. Therefore,

2% < |9
Also, any function from N to N is a subset of N x N and hence

S| < 2%
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Therefore, by Cantor-Schroeder-Bernstein’s theorem, we have
5] = 2% = |R|
i.e., the cardinality of the set of all bijections from N to N is equal to the cardinality of R.[J

Problem 9:
Derive the well-ordering theorem assuming Zorn’s lemma.

Solution 9:

We first state Zorn’s lemma and well-ordering theorem.

Zorn's lemma: Let (P, <) be any poset such that every chain in P has an upper
bound in P, then P has a maximal element.

Well-ordering theorem: Any non-empty set can be well-ordered.

Let S be any non-empty set and let
A:={(A,<): ACS, <isa well-ordering on A}

be the collection of pairs (A, <), where A C S and < is a well-ordering on A. Define a
relation < on A so that for all x,y € A, x < y if and only if x equals an initial segment
of y (if (A, <) is well-ordered, then the set {a € A : a < k} is called an initial segment
of A). This is reflexive, transitive and anti-symmetric, since one set is an initial segment
hence a subset of the other. Therefore the relation < defines a partial order relation on
A. For each chain C C A, define C' = (R, <’), where R is the union of all sets A for all
(A, <) € C and <’ is the union of all relations < for all (A, <) € C. Then, C’ is an upper
bound for C' in A. Therefore, by Zorn's lemma, A has a maximal element, say (M, <j;).
We claim that M contains all the members of S. This is true because if not, then for
any a € S\ M, we can construct (M’ <p), where M’ = M U {a} and <, is extended
so that a is greater than every element of Y. Then <, defines a well-order on (M’) and
(M, <pr) would be larger than (M, <,s), a contradiction. Therefore, since M contains
all the elements of S and <,; is a well-ordering on M it is also a well-ordering on S. [J

Problem 10:
Derive the axiom of choice assuming Zorn’s lemma.

Solution 10:

We state the axiom of choice first.

Axiom of choice: Let S be any set of non-empty sets S = {S;}ic;. Then there is a
function f : S — U,e; Si such that f(S;) € S; for all ¢ € 1.

Let S be any non-empty set. Consider pairs (T, f) consisting of a subset 7' C S and
a choice function f on 7. We introduce a partial order on the set of all such pairs by



defining (T, f) <X (17", f') whenever T'C T" and f’|r = f. The poset is non-empty because
for every a € S, there is an obvious partial choice function on {a}. For every chain C
in this poset, we can define T* = Uiy pjec T and f*(S) = f(S) for any S such that f is
defined on S. Then (T, f*) is an upper bound for C. Therefore, by Zorn's lemma, there
is some maximal element, say (M, fas). If b € S\ M, then we can extend f from M to
M U {b} by defining f(A) = b for any A containing b, which contradicts maximality and
so S\ M = ¢. Therefore, f), is a choice function for M and hence for S. U



