Discrete Mathematics Assignment 1

Nirjhar Nath nirjhar@cmi.ac.in

Problem 1:

Starting from $\mathbb{N} \times \mathbb{N}$ is countable, which we showed in class, show that the set of all rational numbers is countable.

Solution 1:

We prove the following lemma first.

Lemma 1.1: If there exists a surjection from a countable set to a set A, then A is countable or finite.

Proof: Suppose B is countable and there exists a surjection $f : B \to A$. Then for each element $a \in A$, there exists an element $b_a \in B$ such that $f(b_a) = a$. The association $a \mapsto b_a$ is an injection because

$$a_1, a_2 \in A$$
 and $b_{a_1} = b_{a_2} \implies a_1 = f(b_{a_1}) = f(b_{a_2}) = a_2$

Define $g: A \to B$ by $g(a) = b_a$. Then $g(A) \subseteq B$ and since B is countable, so g(A) is countable or finite. Since g is a bijection between A and g(A), so A is countable or finite.

Define $h: \mathbb{N} \times \mathbb{N} \to \mathbb{Q}^+$ by g(m, n) = m/n. Since every positive rational number can be written as a quotient of natural numbers, so g is surjective. Since $\mathbb{N} \times \mathbb{N}$ is countable (as showed in class), it follows from Lemma 1.1 that the set of positive rational numbers, \mathbb{Q}^+ is countable. Now, suppose that the positive rational numbers are enumerated as $\{0, r(1), r(2), r(3), \ldots\}$. Then we can define $k: \mathbb{N} \to \mathbb{Q}$ as

$$k(n) = \begin{cases} 0, & \text{if } n = 1\\ r(\frac{n}{2}), & \text{if } n \text{ is even}\\ -r\left(\frac{n-1}{2}\right), & \text{if } n \text{ is } \text{odd}, n \neq 1 \end{cases}$$

This is an injection because we have enumerated \mathbb{Q}^+ so that $r(i) = r(j) \implies i = j$. Also, it is a surjection because for any $n \neq 1$ and r(n) > 0, the pre-image of r(n) and -r(n) are 2n and 2n + 1 respectively (pre-image of 0 is 1). Therefore, k is a bijection and hence \mathbb{Q} is countable.

Problem 2:

If A_1, A_2, \ldots, A_k are countable sets then show that $A_1 \times A_2 \times \cdots \times A_k$ is countable.

Solution 2:

We use induction on k. But first we prove the following lemmas.

Lemma 2.1: If there exists an injection from a set A to a countable set, then A is countable or finite.

Proof: Suppose *B* is countable and there exists an injection $k : A \to B$, then we can define a bijection $k' : A \to k(A)$ by setting k'(x) = k(x) for every $x \in A$. Since $k(A) \subseteq B$ and *B* is countable, so k(A) is countable or finite. Since k' is a bijection between *A* and k(A), so *A* is countable or finite.

Lemma 2.2: If A and B are countable sets, then $A \times B$ is countable. Proof: Since A and B are countable sets, so there exist bijections $f : \mathbb{N} \to A$ and $g : \mathbb{N} \to B$. We can enumerate the elements of A and B as $\{f(1), f(2), \ldots\}$ and $\{g(1), g(2), \ldots\}$ respectively. Then, $A \times B = \{(f(i), f(j)) \mid i, j \in \mathbb{N}\}$, which is an infinite set. Now we define $h : A \times B \to \mathbb{N}$ by $h(f(i), f(j)) = 2^i 3^j$. This is an injection because for $i_1, i_2, j_1, j_2 \in \mathbb{N}$,

$$2^{i_1}3^{j_1} = 2^{i_2}3^{j_2} \implies i_1 = i_2, j_1 = j_2 \implies (f(i_1), f(j_1)) = (f(i_2), f(j_2))$$
$$\implies h(f(i_1), f(j_1)) = h(f(i_2), f(j_2))$$

Therefore, using Lemma 2.1, we have $A \times B$ is countable.

Let $P_k := A_1 \times A_2 \times \cdots \times A_k$. We have, $P_1 = A_1$ is countable. Suppose that $P_{k-1} = A_1 \times A_2 \times \cdots \times A_{k-1}$ is countable. Then $P_k = P_{k-1} \times A_k$, where P_{k-1} and A_k are countable sets, and hence by the Lemma 2.2, P_k is countable. Therefore we have proved by induction that if A_1, A_2, \ldots, A_k are countable sets then $P_k = A_1 \times A_2 \times \cdots \times A_k$ is countable.

Problem 3:

Is the set of all finite subsets of \mathbb{N} countable? Justify your answer with proof.

Solution 3:

Yes, the set of all finite subsets of \mathbb{N} is countable. Let S be the set of all finite subsets of \mathbb{N} . To prove this, let $A_0 = \{\phi\}$ and for $n = 1, 2, 3, \ldots$, let $A_n :=$ set of subsets of \mathbb{N} whose largest element is n. Then,

$$S = \bigcup_{n=1}^{\infty} A_n$$

i.e., S is expressed as a countable union of finite sets, and hence countable.

Problem 4:

What is the dimension of the reals, \mathbb{R} , as a vector space over the field of rationals, \mathbb{Q} ? Justify your answer with a proof.

Solution 4:

The dimension of \mathbb{R} as a vector space over \mathbb{Q} , is infinite. To prove this, we assume, to the contrary, that the dimension of \mathbb{R} as a vector space over \mathbb{Q} is finite and let v_1, v_2, \ldots, v_n be a basis. Therefore, for any $x \in \mathbb{R}$, there exist unique $a_1, a_2, \ldots, a_n \in \mathbb{Q}$ such that

$$x = a_1v_1 + a_2v_2 + \dots + a_nv_n$$

i.e., the map $\mathbb{Q}^n \to \mathbb{R}$ that takes $(a_1, a_2, \ldots, a_n) \mapsto a_1v_1 + a_2v_2 + \cdots + a_nv_n$ is a bijection, which implies that \mathbb{Q}^n and \mathbb{R} have the same cardinality. From the results of Problem 1 and 2, we have $\mathbb{Q}^n = \mathbb{Q} \times \mathbb{Q} \times \cdots \times \mathbb{Q}$ (*n* times) is countable, but \mathbb{R} is uncountable (proved in class), which is a contradiction. \Box

Problem 5:

Give an explicit injective map from $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

Solution 5:

Any real number in (0, 1) can be written in the form $0.x_1x_2...$, where x_i 's and y_i 's are digits (including 0's). We define the map $f: (0, 1) \times (0, 1) \to (0, 1)$ such that

$$f(0.a_1a_2..., 0.b_1b_2...) = 0.a_1b_1a_2b_2...$$

To make this function well-defined, we avoid decimal expansions that end with infinite successive 9's. To prove that it is injective, we consider any

$$(x,y) = (0.x_1x_2\dots, 0.y_1y_2,\dots), (p,q) = (0.p_1p_2\dots, 0.q_1q_2,\dots) \in (0,1) \times (0,1)$$

Then

$$f(x,y) = f(p,q) \implies 0.x_1y_1x_2y_2\dots = 0.p_1q_1p_2q_2\dots$$
$$\implies x_i = p_i, y_i = q_i \ \forall i \in \mathbb{N} \implies (x,y) = (p,q)$$

Therefore, f is injective. Now, as in Problem 6, define $g:(0,1) \to \mathbb{R}$ such that

$$g(x) = \tan\left(\pi\left(x - \frac{1}{2}\right)\right)$$

which is bijective (as proved in Solution 6). Therefore, we can define the required function as $h : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that

$$h(x,y) = g \circ f(g^{-1}(x), g^{-1}(y))$$

which is injective as f is injective and g, g^{-1} are bijective.

Problem 6:

Give an explicit bijection from the open interval (0,1) to the reals \mathbb{R} .

Solution 6:

We define $g: (0,1) \to \mathbb{R}$ such that

$$g(x) = \tan\left(\pi\left(x - \frac{1}{2}\right)\right)$$

Then for $x \neq \frac{1}{2}$,

$$g'(x) = \pi \sec^2\left(\pi\left(x - \frac{1}{2}\right)\right) > 0$$

and for $x = \frac{1}{2}$, g'(x) = 0 and hence g is strictly increasing in the interval (0, 1). Therefore, g is injective. Also, every $y \in \mathbb{R}$ has a pre-image x such that

$$x = \frac{1}{\pi} \tan^{-1}(y) + \frac{1}{2}$$

which should lie in (0,1). This is clear because the range of $\tan^{-1}(y)$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and hence

$$0 = \frac{1}{\pi} \cdot \left(-\frac{\pi}{2}\right) + \frac{1}{2} < x < \frac{1}{\pi} \cdot \frac{\pi}{2} + \frac{1}{2} < 1$$

	-	-	-	-	

Therefore, g is also surjective and hence g is the required bijection.

Problem 7:

What is the cardinality of the set of all continuous functions from $\mathbb{R} \to \mathbb{R}$? Justify with proof.

Solution 7:

We denote by \mathcal{C}^0 , the set of all continuous functions from \mathbb{R} to \mathbb{R} . For every $c \in \mathbb{R}$, we can define a function $f_c : \mathbb{R} \to \mathbb{R}$ such that for each $x \in \mathbb{R}$, $f_c(x) = c$ so that the association $c \mapsto f_c$ is an injection. Therefore, $|\mathbb{R}| \leq |\mathcal{C}^0|$. Now let $\{q_1, q_2, \ldots\}$ be an enumeration of the rational numbers and let \mathcal{S} be the set of sequences of real numbers. Then the association $f \mapsto \{f(q_n)\}_{n=1}^{\infty}$ is an injection. This is because for any $x \in \mathbb{R}$, $\exists \{x_m\} \in \mathbb{Q} \text{ such that } x_m \to x \text{ as } m \to \infty \text{ (this is possible because } \mathbb{Q} \text{ is dense in } \mathbb{R}\text{)}.$ Therefore, if f, g are continuous, then $f(x_m) \to f(x)$ and $g(x_m) = g(x)$ as $m \to \infty$. Thus, $f(r_m) = g(r_m) \forall m \implies f(x) = g(x)$ (by uniqueness of limit) and hence we proved that the above association is an injection. Therefore, $|\mathcal{C}^0| \leq |\mathcal{S}|$. Let $\mathcal{F}_{\mathbb{N}}$ be the set of all functions from N to R, then we have $|\mathcal{S}| = |\mathcal{F}_N|$. This is because given any sequence $\{a_n\}_{n=1}^{\infty}$, we can just define $f(n) = a_n$. Since every real number can be written as a binary expansion, so we have $\mathcal{F}_{\mathbb{N}}$ has the same cardinality as that of the set of functions from N to (the set of functions from N to $\{0,1\}$), which has the same cardinality as that of the set of functions from $\mathbb{N} \times \mathbb{N}$ to $\{0, 1\}$, which has the same cardinality as that of the set of functions from N to $\{0, 1\}$. But since every real number can be written as a binary expansion, so the of the set of functions from \mathbb{N} to $\{0,1\}$ is same as that of \mathbb{R} . Therefore, $|\mathcal{C}^0| \leq |\mathbb{R}|$. Hence, by Cantor-Schroeder-Bernstein's theorem, we get $|\mathcal{C}^0| = |\mathbb{R}|$, i.e., the cardinality of the set of all continuous functions from \mathbb{R} to \mathbb{R} is same as that of \mathbb{R} .

Problem 8:

What is the cardinality of the set of all bijections from $\mathbb{N} \to \mathbb{N}$? Justify your answer with a proof.

Solution 8:

Let S be the set of all bijections from \mathbb{N} to \mathbb{N} . Consider the set

$$P := \{ (2n - 1, 2n) : n \in \mathbb{N} \}$$

For each subset $A \subseteq P$, define $f_A : \mathbb{N} \to \mathbb{N}$

$$f_A(n) = \begin{cases} n-1, & \text{if } n \text{ is odd and an element of some pair of } A\\ n+1, & \text{if } n \text{ is even and an element of some pair of } A\\ n, & \text{if } k \notin \bigcup A \end{cases}$$

Clearly, there exists a bijection between P and \mathbb{N} , so $|P| = |\mathbb{N}| = \aleph_0$. Now, each of the 2^{\aleph_0} subsets of \mathbb{N} defines a distinct bijection f_A from \mathbb{N} to \mathbb{N} . Therefore,

$$2^{\aleph_0} \le |S|$$

Also, any function from \mathbb{N} to \mathbb{N} is a subset of $\mathbb{N} \times \mathbb{N}$ and hence

 $|S| \le 2^{\aleph_0}$

Therefore, by Cantor-Schroeder-Bernstein's theorem, we have

 $|S| = 2^{\aleph_0} = |\mathbb{R}|$

i.e., the cardinality of the set of all bijections from \mathbb{N} to \mathbb{N} is equal to the cardinality of $\mathbb{R}.\Box$

Problem 9:

Derive the well-ordering theorem assuming Zorn's lemma.

Solution 9:

We first state Zorn's lemma and well-ordering theorem.

Zorn's lemma: Let (P, \leq) be any poset such that every chain in P has an upper bound in P, then P has a maximal element.

Well-ordering theorem: Any non-empty set can be well-ordered.

Let S be any non-empty set and let

 $\mathcal{A} := \{ (A, \leq) : A \subseteq S, \leq \text{ is a well-ordering on } A \}$

be the collection of pairs (A, \leq) , where $A \subseteq S$ and \leq is a well-ordering on A. Define a relation \preceq on \mathcal{A} so that for all $x, y \in \mathcal{A}, x \preceq y$ if and only if x equals an *initial segment* of y (if (A, \leq) is well-ordered, then the set $\{a \in A : a \leq k\}$ is called an initial segment of A). This is reflexive, transitive and anti-symmetric, since one set is an initial segment hence a subset of the other. Therefore the relation \preceq defines a partial order relation on \mathcal{A} . For each chain $C \subseteq \mathcal{A}$, define $C' = (R, \leq')$, where R is the union of all sets A for all $(A, \leq) \in C$ and \leq' is the union of all relations \leq for all $(A, \leq) \in C$. Then, C' is an upper bound for C in \mathcal{A} . Therefore, by Zorn's lemma, \mathcal{A} has a maximal element, say (M, \leq_M) . We claim that M contains all the members of S. This is true because if not, then for any $a \in S \setminus M$, we can construct $(M', \leq_{M'})$, where $M' = M \cup \{a\}$ and $\leq_{M'}$ is extended so that a is greater than every element of Y. Then $\leq_{M'}$ defines a well-order on (M') and $(M', \leq_{M'})$ would be larger than (M, \leq_M) , a contradiction. Therefore, since M contains all the elements of S and \leq_M is a well-ordering on M, it is also a well-ordering on S. \Box

Problem 10:

Derive the axiom of choice assuming Zorn's lemma.

Solution 10:

We state the axiom of choice first.

Axiom of choice: Let S be any set of non-empty sets $S = \{S_i\}_{i \in I}$. Then there is a function $f: S \to \bigcup_{i \in I} S_i$ such that $f(S_i) \in S_i$ for all $i \in I$.

Let S be any non-empty set. Consider pairs (T, f) consisting of a subset $T \subseteq S$ and a choice function f on T. We introduce a partial order on the set of all such pairs by defining $(T, f) \preceq (T', f')$ whenever $T \subseteq T'$ and $f'|_T = f$. The poset is non-empty because for every $a \in S$, there is an obvious partial choice function on $\{a\}$. For every chain Cin this poset, we can define $T^* = \bigcup_{(T,f)\in C} T$ and $f^*(S) = f(S)$ for any S such that f is defined on S. Then (T^*, f^*) is an upper bound for C. Therefore, by Zorn's lemma, there is some maximal element, say (M, f_M) . If $b \in S \setminus M$, then we can extend f from M to $M \cup \{b\}$ by defining f(A) = b for any A containing b, which contradicts maximality and so $S \setminus M = \phi$. Therefore, f_M is a choice function for M and hence for S.