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Problem 1:
Starting from N × N is countable, which we showed in class, show that the set of all
rational numbers is countable.

Solution 1:
We prove the following lemma first.

Lemma 1.1: If there exists a surjection from a countable set to a set A, then A is
countable or finite.
Proof: Suppose B is countable and there exists a surjection f : B → A. Then for
each element a ∈ A, there exists an element ba ∈ B such that f(ba) = a. The
association a 7→ ba is an injection because

a1, a2 ∈ A and ba1 = ba2 =⇒ a1 = f(ba1) = f(ba2) = a2

Define g : A → B by g(a) = ba. Then g(A) ⊆ B and since B is countable, so g(A)
is countable or finite. Since g is a bijection between A and g(A), so A is countable
or finite.

Define h : N × N → Q+ by g(m, n) = m/n. Since every positive rational number can
be written as a quotient of natural numbers, so g is surjective. Since N × N is countable
(as showed in class), it follows from Lemma 1.1 that the set of positive rational numbers,
Q+ is countable. Now, suppose that the positive rational numbers are enumerated as
{0, r(1), r(2), r(3), . . . }. Then we can define k : N → Q as

k(n) =


0, if n = 1
r(n

2 ), if n is even
−r

(
n−1

2

)
, if n is odd, n ̸= 1

This is an injection because we have enumerated Q+ so that r(i) = r(j) =⇒ i = j.
Also, it is a surjection because for any n ̸= 1 and r(n) > 0, the pre-image of r(n) and
−r(n) are 2n and 2n + 1 respectively (pre-image of 0 is 1). Therefore, k is a bijection
and hence Q is countable. □

Problem 2:
If A1, A2, . . . , Ak are countable sets then show that A1 × A2 × · · · × Ak is countable.

Solution 2:
We use induction on k. But first we prove the following lemmas.

Lemma 2.1: If there exists an injection from a set A to a countable set, then A is
countable or finite.
Proof: Suppose B is countable and there exists an injection k : A → B, then we
can define a bijection k′ : A → k(A) by setting k′(x) = k(x) for every x ∈ A. Since
k(A) ⊆ B and B is countable, so k(A) is countable or finite. Since k′ is a bijection
between A and k(A), so A is countable or finite.
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Lemma 2.2: If A and B are countable sets, then A × B is countable.
Proof: Since A and B are countable sets, so there exist bijections f : N → A and
g : N → B. We can enumerate the elements of A and B as {f(1), f(2), . . . } and
{g(1), g(2), . . . } respectively. Then, A × B = {(f(i), f(j)) | i, j ∈ N}, which is an
infinite set. Now we define h : A × B → N by h(f(i), f(j)) = 2i3j. This is an
injection because for i1, i2, j1, j2 ∈ N,

2i13j1 = 2i23j2 =⇒ i1 = i2, j1 = j2 =⇒ (f(i1), f(j1)) = (f(i2), f(j2))
=⇒ h(f(i1), f(j1)) = h(f(i2), f(j2))

Therefore, using Lemma 2.1, we have A × B is countable.

Let Pk := A1 × A2 × · · · × Ak. We have, P1 = A1 is countable. Suppose that
Pk−1 = A1 × A2 × · · · × Ak−1 is countable. Then Pk = Pk−1 × Ak, where Pk−1 and Ak are
countable sets, and hence by the Lemma 2.2, Pk is countable. Therefore we have proved
by induction that if A1, A2, . . . , Ak are countable sets then Pk = A1 × A2 × · · · × Ak is
countable. □

Problem 3:
Is the set of all finite subsets of N countable? Justify your answer with proof.

Solution 3:
Yes, the set of all finite subsets of N is countable. Let S be the set of all finite subsets
of N. To prove this, let A0 = {ϕ} and for n = 1, 2, 3, . . . , let An := set of subsets of N
whose largest element is n. Then,

S =
∞⋃

n=1
An

i.e., S is expressed as a countable union of finite sets, and hence countable.
Problem 4:
What is the dimension of the reals, R, as a vector space over the field of rationals, Q?
Justify your answer with a proof.

Solution 4:
The dimension of R as a vector space over Q, is infinite. To prove this, we assume, to the
contrary, that the dimension of R as a vector space over Q is finite and let v1, v2, . . . , vn

be a basis. Therefore, for any x ∈ R, there exist unique a1, a2, . . . , an ∈ Q such that

x = a1v1 + a2v2 + · · · + anvn

i.e., the map Qn → R that takes (a1, a2, . . . , an) 7→ a1v1 + a2v2 + · · · + anvn is a bijection,
which implies that Qn and R have the same cardinality. From the results of Problem
1 and 2, we have Qn = Q × Q × · · · × Q (n times) is countable, but R is uncountable
(proved in class), which is a contradiction. □

Problem 5:
Give an explicit injective map from R × R → R.

Solution 5:
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Any real number in (0, 1) can be written in the form 0.x1x2 . . . , where xi’s and yi’s are
digits (including 0’s). We define the map f : (0, 1) × (0, 1) → (0, 1) such that

f(0.a1a2 . . . , 0.b1b2 . . . ) = 0.a1b1a2b2 . . .

To make this function well-defined, we avoid decimal expansions that end with infinite
successive 9’s. To prove that it is injective, we consider any

(x, y) = (0.x1x2 . . . , 0.y1y2, . . . ), (p, q) = (0.p1p2 . . . , 0.q1q2, . . . ) ∈ (0, 1) × (0, 1)

Then

f(x, y) = f(p, q) =⇒ 0.x1y1x2y2 · · · = 0.p1q1p2q2 . . .

=⇒ xi = pi, yi = qi ∀i ∈ N =⇒ (x, y) = (p, q)

Therefore, f is injective. Now, as in Problem 6, define g : (0, 1) → R such that

g(x) = tan
π

(
x − 1

2

) 
which is bijective (as proved in Solution 6). Therefore, we can define the required function
as h : R × R → R such that

h(x, y) = g ◦ f
(
g−1(x), g−1(y)

)
which is injective as f is injective and g, g−1 are bijective. □

Problem 6:
Give an explicit bijection from the open interval (0, 1) to the reals R.

Solution 6:
We define g : (0, 1) → R such that

g(x) = tan
π

(
x − 1

2

) 
Then for x ̸= 1

2 ,

g′(x) = π sec2

π
(

x − 1
2

)  > 0

and for x = 1
2 , g′(x) = 0 and hence g is strictly increasing in the interval (0, 1). Therefore,

g is injective. Also, every y ∈ R has a pre-image x such that

x = 1
π

tan−1(y) + 1
2

which should lie in (0, 1). This is clear because the range of tan−1(y) is (−π
2 , π

2 ) and hence

0 = 1
π

·
(

−π

2

)
+ 1

2 < x <
1
π

· π

2 + 1
2 < 1
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Therefore, g is also surjective and hence g is the required bijection. □

Problem 7:
What is the cardinality of the set of all continuous functions from R → R? Justify with
proof.

Solution 7:

We denote by C0, the set of all continuous functions from R to R. For every c ∈ R,
we can define a function fc : R → R such that for each x ∈ R, fc(x) = c so that the
association c 7→ fc is an injection. Therefore, |R| ≤ |C0|. Now let {q1, q2, . . . } be an
enumeration of the rational numbers and let S be the set of sequences of real numbers.
Then the association f 7→ {f(qn)}∞

n=1 is an injection. This is because for any x ∈ R,
∃ {xm} ∈ Q such that xm → x as m → ∞ (this is possible because Q is dense in R).
Therefore, if f, g are continuous, then f(xm) → f(x) and g(xm) = g(x) as m → ∞.
Thus, f(rm) = g(rm) ∀m =⇒ f(x) = g(x) (by uniqueness of limit) and hence we proved
that the above association is an injection. Therefore, |C0| ≤ |S|. Let FN be the set of
all functions from N to R, then we have |S| = |FN|. This is because given any sequence
{an}∞

n=1, we can just define f(n) = an. Since every real number can be written as a
binary expansion, so we have FN has the same cardinality as that of the set of functions
from N to (the set of functions from N to {0, 1}), which has the same cardinality as that
of the set of functions from N×N to {0, 1}, which has the same cardinality as that of the
set of functions from N to {0, 1}. But since every real number can be written as a binary
expansion, so the of the set of functions from N to {0, 1} is same as that of R. Therefore,
|C0| ≤ |R|. Hence, by Cantor-Schroeder-Bernstein’s theorem, we get |C0| = |R|, i.e., the
cardinality of the set of all continuous functions from R to R is same as that of R.

Problem 8:
What is the cardinality of the set of all bijections from N → N? Justify your answer with
a proof.

Solution 8:

Let S be the set of all bijections from N to N. Consider the set

P := {(2n − 1, 2n) : n ∈ N}

For each subset A ⊆ P , define fA : N → N

fA(n) =


n − 1, if n is odd and an element of some pair of A

n + 1, if n is even and an element of some pair of A

n, if k ̸∈ ⋃
A

Clearly, there exists a bijection between P and N, so |P | = |N| = ℵ0. Now, each of the
2ℵ0 subsets of N defines a distinct bijection fA from N to N. Therefore,

2ℵ0 ≤ |S|

Also, any function from N to N is a subset of N × N and hence

|S| ≤ 2ℵ0
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Therefore, by Cantor-Schroeder-Bernstein’s theorem, we have

|S| = 2ℵ0 = |R|

i.e., the cardinality of the set of all bijections from N to N is equal to the cardinality of R.□

Problem 9:
Derive the well-ordering theorem assuming Zorn’s lemma.

Solution 9:

We first state Zorn’s lemma and well-ordering theorem.

Zorn’s lemma: Let (P, ≤) be any poset such that every chain in P has an upper
bound in P , then P has a maximal element.

Well-ordering theorem: Any non-empty set can be well-ordered.

Let S be any non-empty set and let

A := {(A, ≤) : A ⊆ S, ≤ is a well-ordering on A}

be the collection of pairs (A, ≤), where A ⊆ S and ≤ is a well-ordering on A. Define a
relation ⪯ on A so that for all x, y ∈ A, x ⪯ y if and only if x equals an initial segment
of y (if (A, ≤) is well-ordered, then the set {a ∈ A : a ≤ k} is called an initial segment
of A). This is reflexive, transitive and anti-symmetric, since one set is an initial segment
hence a subset of the other. Therefore the relation ⪯ defines a partial order relation on
A. For each chain C ⊆ A, define C ′ = (R, ≤′), where R is the union of all sets A for all
(A, ≤) ∈ C and ≤′ is the union of all relations ≤ for all (A, ≤) ∈ C. Then, C ′ is an upper
bound for C in A. Therefore, by Zorn’s lemma, A has a maximal element, say (M, ≤M).
We claim that M contains all the members of S. This is true because if not, then for
any a ∈ S \ M , we can construct (M ′, ≤M ′), where M ′ = M ∪ {a} and ≤M ′ is extended
so that a is greater than every element of Y . Then ≤M ′ defines a well-order on (M ′) and
(M ′, ≤M ′) would be larger than (M, ≤M), a contradiction. Therefore, since M contains
all the elements of S and ≤M is a well-ordering on M , it is also a well-ordering on S. □

Problem 10:
Derive the axiom of choice assuming Zorn’s lemma.

Solution 10:

We state the axiom of choice first.

Axiom of choice: Let S be any set of non-empty sets S = {Si}i∈I . Then there is a
function f : S → ⋃

i∈I Si such that f(Si) ∈ Si for all i ∈ I.

Let S be any non-empty set. Consider pairs (T, f) consisting of a subset T ⊆ S and
a choice function f on T . We introduce a partial order on the set of all such pairs by
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defining (T, f) ⪯ (T ′, f ′) whenever T ⊆ T ′ and f ′|T = f . The poset is non-empty because
for every a ∈ S, there is an obvious partial choice function on {a}. For every chain C
in this poset, we can define T ∗ = ⋃

(T,f)∈C T and f ∗(S) = f(S) for any S such that f is
defined on S. Then (T ∗, f ∗) is an upper bound for C. Therefore, by Zorn’s lemma, there
is some maximal element, say (M, fM). If b ∈ S \ M , then we can extend f from M to
M ∪ {b} by defining f(A) = b for any A containing b, which contradicts maximality and
so S \ M = ϕ. Therefore, fM is a choice function for M and hence for S. □
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