Classical Mechanics 1 at CMI: Final exam, Nov 25, 2022

This question paper has 2 pages. Read questions carefully, write your answers clearly in blue and briefly explain your reasoning. Use a new sheet of paper where indicated. No computers/phones/notes/books/discussion permitted: closed book exam. 90 marks.

- 1. $\langle 10 \rangle$ Give an example of vectors a, b, c in 3d Euclidean space to show that the cross product is not associative in general. Begin by giving an equation to say what it means for the cross product to be nonassociative.
- 2. $\langle 10 \rangle$ Give an example of a physical scattering process in which the total kinetic energy of particles in the far past is less than that in the asymptotic future. Explain briefly with a figure, mentioning the frame considered and the state of motion of the particles mentioned.

New sheet

- 3. $\langle 10 \rangle$ Suppose a potential in 3d Euclidean space is given by $V = \alpha/r^n$ where r is the radial distance from the origin, $\alpha > 0$ a real constant and n a real number.
 - (a) $\langle 5 \rangle$ Find the associated force F and express it in spherical polar coordinates.
 - (b) $\langle 2 \rangle$ For n = -2 write V and F in Cartesian coordinates.
 - (c) $\langle 3 \rangle$ Describe the resulting F for n=-2 by saying whether the force is attractive/repulsive (relative to the origin), how it behaves with distance and give it a suitable name using standard terminology. Plot the graph of V.

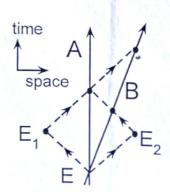
New sheet

- 4. $\langle \mathbf{10} \rangle$ Suppose a particle of mass m and charge q moves in \mathbb{R}^3 subject to the force $q\mathbf{v} \times B(\mathbf{r})$ where $\mathbf{r}(t)$ is the position vector of the particle at time t and $\mathbf{v}(t)$ its velocity. $B(\mathbf{r})$ is a fixed vector field called the magnetic field.
 - (a) $\langle 2 \rangle$ Write Newton's equation of motion for this particle.
 - (b) $\langle 5 \rangle$ Explain whether the motion of this particle is time-reversal invariant or not.
 - (c) $\langle 3 \rangle$ Interpret in qualitative physical terms the equation that r(-t) satisfies.

New sheet

- 5. $\langle \mathbf{10} \rangle$ Consider a plane simple pendulum with point-like bob of mass m suspended by a massless rod of length ℓ from a pivot subject to Earth's constant acceleration due to gravity g.
 - (a) $\langle 3 \rangle$ Sketch a diagram of the phase space of the simple pendulum with counter-clockwise angle of deflection θ . Indicate the origin and label axes.
 - (b) (3) Indicate and label the two static solutions on the phase space mentioning their stability.
 - (c) $\langle 4 \rangle$ Draw a librational and a rotational trajectory (with arrows showing increasing time) on the phase space and label which is which.

New sheet


- 6. (10) Equivalence principle.
 - (a) $\langle 7 \rangle$ Give one experimental setup/thought experiment and related formulae & observations to motivate the principle of equivalence.
 - (b) (3) State the principle of equivalence.

New sheet

- 7. $\langle 10 \rangle$ Kepler problem.
 - (a) $\langle 5 \rangle$ What is the dimension of Kepler's constant K that arises in planetary physics? Obtain [K] using an equation in which it appears, mentioning the meaning of symbols.
 - (b) $\langle 5 \rangle$ Estimate the numerical value of K (as a ratio of real numbers) in suitable units using well-known quantities.
- 8. $\langle 10 \rangle$ Suppose S is an inertial frame with Cartesian coordinates x, y, z, t. Suppose frame S' moves along x at the speed of light c. Is S' an inertial frame? Explain your answer based on the special theory of relativity.

New sheet

- 9. $\langle 10 \rangle$ In the context of special relativity, consider the accompanying space-time diagram showing the world lines of two inertial observers A and B in relative motion along with light signals to and from events E_1 and E_2 . It is drawn in a frame in which A is at rest and in units where c = 1.
 - (a) $\langle 1 \rangle$ What happens at event E?
 - (b) $\langle 2 \rangle$ Infer whether the events E_1 and E_2 are simultaneous or which precedes the other for A and B (with brief justification).
 - (c) (2) What general conclusion can one draw from the figure?
 - (d) $\langle 5 \rangle$ Redraw the space-time diagram in a frame in which B is at rest.

