Calculus Quiz 6 06/11/'23

	You	mav	use	vour	class	notes	during	the	auiz.	No	other	sources	are	permitted
--	-----	-----	-----	------	-------	-------	--------	-----	-------	----	-------	---------	-----	-----------

- 1. Let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n , and let ϕ_1, \ldots, ϕ_n be the dual basis.
 - (a) Show that $\phi_{i_1} \wedge \cdots \wedge \phi_{i_k}(e_{i_1}, \dots, e_{i_k}) = 1$.
 - (b) Let $v_1, \ldots, v_k \in \mathbb{R}^n$, and let A be the $k \times n$ matrix $(v_{i,j})$ whose (i,j)-th entries are the coefficients in the expressions $v_i = \sum_j v_{i,j} e_j$, $i,j = 1,\ldots,n$. Show that $\phi_{i_1} \wedge \cdots \wedge \phi_{i_k}(e_1,\ldots,e_k)$ is the determinant of the $k \times k$ minor of A obtained by selecting columns i_1,\ldots,i_k .
 - (c) Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Let $f^*: \wedge^k \mathbb{R}^n \to \wedge^k \mathbb{R}^n$ be the pullback of k-forms. When is f^* injective?