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Problem 1:

Suppose f is a real function on [a,b], n is a positive integer, and f"~! exists for every
t € [a,b]. Let «, 5, and P be as in Taylor’s Theorem (5.15). Define

EAOERIC)
for t € [a,b],t # B, differentiate

f@) = f(B) = (t=B)Qt)
n — 1 times at ¢ = «, and derive the following version of Taylor’s theorem:

Q" ()

(8) = P(8)+ =3y,

(6 —a)™.

Solution 1:
We shall prove using induction that for 1 <k <n — 1,

FOE) = (t = B)QW(1) + kQ" (). (1)
Clearly for k = 1, this is true because

F'(t) = (= B)R'() + Q).

Assume that for some 1 <k <n —1,

FR) =t = )RW(t) +kQ" V(1)
Then

FEN () = < F0 ()

= L= QW) + k%N (1)
= (=R M) + QM (1) + kM ()
= (t = B)Q" () + (k+1)Q™(t)
and hence we have proved that equation (1) holds.
Now, we have,

00 (5 0 = & (= QW) + 45 V(@)} (5 - a)f
et + et e
Since the sum telescopes, therefore,
P =T T -0 = 1) - 56 - o
and hence,
6) = P)+ L5y



Problem 2:
Let f = (f1, fo) be mapping of R? into R? given by

filz,y) = e cosy, fa(w,y) =" siny.

(a) What is the range of f?

(b) Show that the Jacobian of f is not zero at any point of R%. Thus every point of R?
has a neighborhood in which f is one-to-one. Nevertheless, f is not one-to-one on R2.
(c) Put a = (0,7/3), b = f(a), let g be the continuous inverse of f, defined in a neigh-
borhood of b, such that g(b) = a. Find an explicit formula for g, compute f'(a) and
g/(b), and verify the formula g'(b) = {f'(g(b))}~! (d) What are the images under f of
lines parallel to the coordinate axes?

Solution 2:
(a) If (w, z) # 0, choose y so that

w z

———— and siny = ———.
N V=Vt 2
Let x = In vw? + 22 so that e = vw? + 22. Then,

w=e"cosy = fi(x,y) and z =e"siny = fo(z,y).

cosy =

Therefore, every point except (0,0) is in the range of f because for any point (w,z) =
f(z,y), we have w? + 22 = (e”)? > 0, i.e., the range of f is R?\ (0,0).
(b) We have,

£'(z,y) = Difi(z,y) Difa(z,y)\ _ [ €"cosy e"siny
’ —e¥siny e“cosy)

Dyfi(x,y) Dafa(x,y)

Therefore, the Jacobian of f at (z,y) is given by
Je(z,y)) = det[f'(z,y)] = €**(cos® y + sin®y) = e* # 0

for all x. By the inverse function theorem, this implies that f is locally invertible at
every point of R?. In other words, every point in R? has a neighborhood in which f is
one-to-one. However, since f(z,y) = f(x,y + 2nm) for all n € Z, it follows that f is not
one-to one.

(c) Let w = fi(x,y) = e"cosy, z = fa(x,y) = €*siny. Then in a neighborhood of

b =f(a) = (%, ?) where w # 0, we have w? + 22 = ** and Z = tany. Thus, we have

g(w,z) = (ln Vw? + 22, arctan(i)). We then have,

e® cos e” sin 7 oz
'z, y) = ... Y - Y) and g(w,z)=|wt= wi=),
e Slny € Cosy m m

Therefore,



and hence,

g'(b) ={f'(a)} " = {f'(g(b))} "
(d) Lines parallel to the z-axis are of the form (¢,a), where ¢t € R is the parameter and
a is a constant. Under f, these points are mapped to

f(t,a) = (fi(t,a), fo(t,a)) = (e’ cosa, e’ sina),

which is a point on the circle of radius e’ centered at the origin. Therefore, the image of
any line parallel to the z-axis is a circle centered at the origin.

Similarly, lines parallel to the y-axis are of the form (a,t), and under f these points
are mapped to

f(a,t) = (fi(a,t), fo(a,t)) = (e* cost,e®sint),

which is also a point on a circle centered at the origin. Therefore, the image of any line
parallel to the y-axis is also a circle centered at the origin.

Therefore, under f, lines parallel to the coordinate axes are mapped to circles centered
at the origin. |

Problem 3:

Show that the system of equations

3r+y—z4+ut=0
r—y+2z2+u=0
204+ 2y —3z+2u=20
can be solved for z,y,u in terms of z; for x, z,u in terms of y; for y, z, v in terms of z;

but not for x,y, z in terms of u.

Solution 3:
Consider the transformation
f(z,y,2,u) = Br+y—2z+u*, 2 —y+2z+u,22+ 2y — 32+ 2u)
= (fl(x7yuzvu)7f2(x7y7Zvu)7f3(x7yuzvu>) (SaY)'

Then the matrix of the derivative of the transformation f is given by

3 1 -1 2u
f'(x,y,z,w) = (D; fi(z,y,z,w)) =1 =1 2 1
2 2 =3 2

Note that f(0) = 0. The determinant of the z,y, u part of the matrix is

3 1 2u
det |1 =1 1| =3(-2-2)—(2-2)+2u(2+2)=8u—12
2 2 2

which is not equal to 0 near 0, so by the implicit function theorem, there is a solution to
f(x(2),y(2), z,u(2)) = 0 near 0.



The determinant of the z, z, u part of the matrix is

3 =1 2u
det {1 2 1 [=34+2)4+(2-2)+2u(—-3—-4)=21-14u
2 -3 2

which is not equal to 0 near 0, so by the implicit function theorem, there is a solution to

f(x(y),vy,2(y),u(y)) = 0 near 0.
Similarly, the determinant of the y, z, u part of the matrix is

1 -1 2u
det -1 2 1| =4+3)+(-2—-2)+2u(3—-4)=3-2u
2 -3 2

which is not equal to 0 near 0, so by the implicit function theorem, there is a solution to
f(z,y(x), z(x),u(x)) = 0 near 0.
However, the determinant of the z,y, z part of the matrix is

3 1 -1
det[1 -1 2 |=3B83-4)—-(-3—-4)—-(242)=-34+7—-4=0,
2 2 -3
and therefore the implicit function theorem cannot be applied. |
Problem 4:

Define f in R? by
fl, 1, 02) = 21 + € + ys.

Show that f(0,1,—1) = 0,(D1f)(0,1,—1) # 0, and that there exists therefore a dif-
ferentiable function ¢ in some neighborhood of (1,—1) in R?, such that g(1,—1) = 0
and

f(g(yl,yz),yl,yg) =0.
Find (Dg)(1,—1) and (Dyg)(1, —1).

Solution 4:

We have, f(0,1,—1) =0%-1+¢€%+ (—1) = 0, and since

0
Dif(x,y1,12) = 5 (2% + € +45) = 2wy1 + €,

so D1 f(0,1,=1) =2-0-1+¢€% =1 # 0. Therefore, by the implicit function theorem,
there exists a differentiable function ¢ in some neighborhood of (1, —1) in R? such that
g(1,—=1) = 0 and f(9(y1,92),y1,92) = 0. Furthermore, since Dyf(0,1,—1) = 0 and
D3f(0,1,—1) =1, so with m = 1,n = 2 in the implicit function theorem, we have

A, = (1) and A, = (0 1),
and the derivative of g at (1, —1) is given by
gL -1 =-A7"4,=—(1)" (0 1)=(0 -1).
Therefore, Dig(1, 1) = 0 and Dag(1, —1) = —1. n

D



Problem 5:

Show that tangent vectors can be realized as velocity vectors of curves. More precisely,
let U be an open set in R”. Let g be a C*' map U — R™. Let ¢ a point in the image of
g, M = g7'(c) and p € M such that ¢'(p) is surjective. Recall that T,M = the kernel of
¢ (p) is called the tangent space of M at p. Show that this tangent space is spanned by the
velocity vectors of all C* paths v in M based at p, i.e., by 7/(0), where v : (—¢,€) — M
is a C' function with v(0) = p. Hint: use implicit function theorem to get the desired
curve in the dependent coordinate.

Solution 5:

Let v : (—€,6) = M be a C! path based at p, i.e., v(0) = p. Define F : (—¢,¢) — R”
by F(t) = g(7(t)). Then F(0) = ¢ and F'(0) = ¢'(7(0))7'(0) = ¢'(p)7'(0) = 0 since
7'(0) € T,M. By the implicit function theorem, there exists a C! function ¢ : (—¢,€) —
R"™ such that F(t) = c if and only if v(t) = ¢(t). Moreover, we have ¢(0) = 0 and
¢'(0) = —=(DF|,)"'¢'(p)7'(0), where DF|, denotes the derivative of F' at t = 0. Since
g (p) is surjective, DF|, is injective, so (DF|,)~" exists. Therefore, ¢/(0) is uniquely
determined by ~/(0), and we can express 7/(0) in terms of ¢'(0) as follows:

Y (0) = —¢'(p) " (DF|,)¢'(0).

Since ¢/'(0) € R"™™ we see that 7/(0) € T,M. Thus, every C' path v in M based at p
gives rise to a tangent vector 7/(0), and the tangent space T, M is spanned by the velocity
vectors of all such paths.

Conversely, let v € T,M be a tangent vector at p € M. By definition of the tangent
space, there exists a C' path v : (—e,¢) — M based at p such that 7/(0) = v. Let
é(t) = tv for t € (—¢,¢€). Then ¢(0) =0 and ¢'(0) = v. We want to find a C* path 7 in
M based at p such that 4/(0) = v. By the implicit function theorem, we can solve for ¥
by setting

F(t,z) =~({t)—2=0

and taking z = 4(¢). Then

d

S EEAM) =7'(t) =7(1) =0,

so ¥'(0) = 7/(0) = v, as desired. Therefore, we have shown that the tangent space T7,,M
is indeed spanned by the velocity vectors of C* paths in M based at p. |



