Analysis II HW 4

Nirjhar Nath BMC202239 nirjhar@cmi.ac.in

Problem 1:

Suppose f is a real function on [a, b], n is a positive integer, and f^{n-1} exists for every $t \in [a, b]$. Let α, β , and P be as in Taylor's Theorem (5.15). Define

$$Q(t) = \frac{f(t) - f(\beta)}{t - \beta}$$

for $t \in [a, b], t \neq \beta$, differentiate

$$f(t) - f(\beta) = (t - \beta)Q(t)$$

n-1 times at $t = \alpha$, and derive the following version of Taylor's theorem:

$$f(\beta) = P(\beta) + \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n.$$

Solution 1:

We shall prove using induction that for $1 \le k \le n-1$,

$$f^{(k)}(t) = (t - \beta)Q^{(k)}(t) + kQ^{(k-1)}(t).$$
(1)

Clearly for k = 1, this is true because

$$f'(t) = (t - \beta)Q'(t) + Q(t).$$

Assume that for some $1 \le k < n - 1$,

$$f^{(k)}(t) = (t - \beta)Q^{(k)}(t) + kQ^{(k-1)}(t).$$

Then

$$f^{(k+1)}(t) = \frac{\mathrm{d}}{\mathrm{d}t} f^{(k)}(t)$$

= $\frac{\mathrm{d}}{\mathrm{d}t} \left\{ (t - \beta)Q^{(k)}(t) + kQ^{(k-1)}(t) \right\}$
= $(t - \beta)Q^{(k+1)}(t) + Q^{(k)}(t) + kQ^{(k)}(t)$
= $(t - \beta)Q^{(k+1)}(t) + (k + 1)Q^{(k)}(t)$

and hence we have proved that equation (1) holds.

Now, we have,

$$\frac{f^{k}(\alpha)}{k!}(\beta - \alpha)^{k} = \frac{1}{k!} \left\{ (\alpha - \beta)Q^{(k)}(t) + kQ^{(k-1)}(\alpha) \right\} (\beta - \alpha)^{k}$$
$$= -\frac{(\beta - \alpha)^{k+1}}{k!}Q^{(k)}(t) + \frac{(\beta - \alpha)^{k}}{(k-1)!}Q^{(k-1)}(\alpha).$$

Since the sum telescopes, therefore,

$$P(\beta) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k = f(\beta) - \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n,$$

and hence,

$$f(\beta) = P(\beta) + \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n.$$

Problem 2:

Let $\mathbf{f} = (f_1, f_2)$ be mapping of \mathbb{R}^2 into \mathbb{R}^2 given by

$$f_1(x,y) = e^x \cos y, \ f_2(x,y) = e^x \sin y.$$

(a) What is the range of \mathbf{f} ?

(b) Show that the Jacobian of \mathbf{f} is not zero at any point of \mathbb{R}^2 . Thus every point of \mathbb{R}^2 has a neighborhood in which \mathbf{f} is one-to-one. Nevertheless, \mathbf{f} is not one-to-one on \mathbb{R}^2 . (c) Put $\mathbf{a} = (0, \pi/3)$, $\mathbf{b} = \mathbf{f}(\mathbf{a})$, let \mathbf{g} be the continuous inverse of \mathbf{f} , defined in a neighborhood of \mathbf{b} , such that $\mathbf{g}(\mathbf{b}) = \mathbf{a}$. Find an explicit formula for \mathbf{g} , compute $\mathbf{f}'(\mathbf{a})$ and $\mathbf{g}'(\mathbf{b})$, and verify the formula $\mathbf{g}'(\mathbf{b}) = {\mathbf{f}'(\mathbf{g}(\mathbf{b}))}^{-1}$ (d) What are the images under \mathbf{f} of lines parallel to the coordinate axes?

Solution 2:

(a) If $(w, z) \neq 0$, choose y so that

$$\cos y = \frac{w}{\sqrt{w^2 + z^2}}$$
 and $\sin y = \frac{z}{\sqrt{w^2 + z^2}}$.

Let $x = \ln \sqrt{w^2 + z^2}$ so that $e^x = \sqrt{w^2 + z^2}$. Then,

$$w = e^x \cos y = f_1(x, y)$$
 and $z = e^x \sin y = f_2(x, y)$.

Therefore, every point except (0,0) is in the range of **f** because for any point $(w,z) = \mathbf{f}(x,y)$, we have $w^2 + z^2 = (e^x)^2 > 0$, i.e., the range of **f** is $\mathbb{R}^2 \setminus (0,0)$. (b) We have,

$$\mathbf{f}'(x,y) = \begin{pmatrix} D_1 f_1(x,y) & D_1 f_2(x,y) \\ D_2 f_1(x,y) & D_2 f_2(x,y) \end{pmatrix} = \begin{pmatrix} e^x \cos y & e^x \sin y \\ -e^x \sin y & e^x \cos y \end{pmatrix}$$

Therefore, the Jacobian of \mathbf{f} at (x, y) is given by

$$J_{\mathbf{f}}(x,y)) = \det[\mathbf{f}'(x,y)] = e^{2x}(\cos^2 y + \sin^2 y) = e^{2x} \neq 0$$

for all x. By the inverse function theorem, this implies that \mathbf{f} is locally invertible at every point of \mathbb{R}^2 . In other words, every point in \mathbb{R}^2 has a neighborhood in which \mathbf{f} is one-to-one. However, since $\mathbf{f}(x, y) = \mathbf{f}(x, y + 2n\pi)$ for all $n \in \mathbb{Z}$, it follows that \mathbf{f} is not one-to one.

(c) Let $w = f_1(x, y) = e^x \cos y$, $z = f_2(x, y) = e^x \sin y$. Then in a neighborhood of $\mathbf{b} = \mathbf{f}(\mathbf{a}) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ where $w \neq 0$, we have $w^2 + z^2 = e^{2x}$ and $\frac{z}{w} = \tan y$. Thus, we have $\mathbf{g}(w, z) = \left(\ln \sqrt{w^2 + z^2}, \arctan(\frac{z}{w})\right)$. We then have,

$$\mathbf{f}'(x,y) = \begin{pmatrix} e^x \cos y & e^x \sin y \\ -e^x \sin y & e^x \cos y \end{pmatrix} \text{ and } \mathbf{g}'(w,z) = \begin{pmatrix} \frac{w}{w^2+z^2} & \frac{-z}{w^2+z^2} \\ \frac{z}{w^2+z^2} & \frac{w}{w^2+z^2} \end{pmatrix}.$$

Therefore,

$$\mathbf{f}'(\mathbf{a})\mathbf{g}'(\mathbf{b}) = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

and hence,

$$g'(b) = {f'(a)}^{-1} = {f'(g(b))}^{-1}$$

(d) Lines parallel to the x-axis are of the form (t, a), where $t \in \mathbb{R}$ is the parameter and a is a constant. Under **f**, these points are mapped to

$$\mathbf{f}(t,a) = (f_1(t,a), f_2(t,a)) = (e^t \cos a, e^t \sin a),$$

which is a point on the circle of radius e^t centered at the origin. Therefore, the image of any line parallel to the x-axis is a circle centered at the origin.

Similarly, lines parallel to the y-axis are of the form (a, t), and under **f** these points are mapped to

$$\mathbf{f}(a,t) = (f_1(a,t), f_2(a,t)) = (e^a \cos t, e^a \sin t),$$

which is also a point on a circle centered at the origin. Therefore, the image of any line parallel to the y-axis is also a circle centered at the origin.

Therefore, under \mathbf{f} , lines parallel to the coordinate axes are mapped to circles centered at the origin.

Problem 3:

Show that the system of equations

$$3x + y - z + u2 = 0$$
$$x - y + 2z + u = 0$$
$$2x + 2y - 3z + 2u = 0$$

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x; but not for x, y, z in terms of u.

Solution 3:

Consider the transformation

$$\mathbf{f}(x, y, z, u) = (3x + y - z + u^2, x - y + 2z + u, 2x + 2y - 3z + 2u)$$

= $(f_1(x, y, z, u), f_2(x, y, z, u), f_3(x, y, z, u))$ (say).

Then the matrix of the derivative of the transformation \mathbf{f} is given by

$$\mathbf{f}'(x, y, z, w) = (D_j f_i(x, y, z, w)) = \begin{pmatrix} 3 & 1 & -1 & 2u \\ 1 & -1 & 2 & 1 \\ 2 & 2 & -3 & 2 \end{pmatrix}.$$

Note that $\mathbf{f}(\mathbf{0}) = \mathbf{0}$. The determinant of the x, y, u part of the matrix is

$$\det \begin{pmatrix} 3 & 1 & 2u \\ 1 & -1 & 1 \\ 2 & 2 & 2 \end{pmatrix} = 3(-2-2) - (2-2) + 2u(2+2) = 8u - 12$$

which is not equal to **0** near **0**, so by the implicit function theorem, there is a solution to $\mathbf{f}(x(z), y(z), z, u(z)) = \mathbf{0}$ near **0**.

The determinant of the x, z, u part of the matrix is

$$\det \begin{pmatrix} 3 & -1 & 2u \\ 1 & 2 & 1 \\ 2 & -3 & 2 \end{pmatrix} = 3(4+2) + (2-2) + 2u(-3-4) = 21 - 14u$$

which is not equal to **0** near **0**, so by the implicit function theorem, there is a solution to $\mathbf{f}(x(y), y, z(y), u(y)) = \mathbf{0}$ near **0**.

Similarly, the determinant of the y, z, u part of the matrix is

$$\det \begin{pmatrix} 1 & -1 & 2u \\ -1 & 2 & 1 \\ 2 & -3 & 2 \end{pmatrix} = (4+3) + (-2-2) + 2u(3-4) = 3 - 2u$$

which is not equal to **0** near **0**, so by the implicit function theorem, there is a solution to $\mathbf{f}(x, y(x), z(x), u(x)) = \mathbf{0}$ near **0**.

However, the determinant of the x, y, z part of the matrix is

$$\det \begin{pmatrix} 3 & 1 & -1 \\ 1 & -1 & 2 \\ 2 & 2 & -3 \end{pmatrix} = 3(3-4) - (-3-4) - (2+2) = -3 + 7 - 4 = 0,$$

and therefore the implicit function theorem cannot be applied.

Problem 4:

Define f in \mathbb{R}^3 by

$$f(x, y_1, y_2) = x^2 y_1 + e^x + y_2.$$

Show that f(0,1,-1) = 0, $(D_1f)(0,1,-1) \neq 0$, and that there exists therefore a differentiable function g in some neighborhood of (1,-1) in \mathbb{R}^2 , such that g(1,-1) = 0and

$$f(g(y_1, y_2), y_1, y_2) = 0.$$

Find $(D_1g)(1, -1)$ and $(D_2g)(1, -1)$.

Solution 4:

We have, $f(0, 1, -1) = 0^2 \cdot 1 + e^0 + (-1) = 0$, and since

$$D_1 f(x, y_1, y_2) = \frac{\partial}{\partial x} (x^2 y_1 + e^x + y_2) = 2xy_1 + e^x,$$

so $D_1f(0,1,-1) = 2 \cdot 0 \cdot 1 + e^0 = 1 \neq 0$. Therefore, by the implicit function theorem, there exists a differentiable function g in some neighborhood of (1,-1) in \mathbb{R}^2 , such that g(1,-1) = 0 and $f(g(y_1,y_2), y_1, y_2) = 0$. Furthermore, since $D_2f(0,1,-1) = 0$ and $D_3f(0,1,-1) = 1$, so with m = 1, n = 2 in the implicit function theorem, we have

$$A_x = \begin{pmatrix} 1 \end{pmatrix}$$
 and $A_y = \begin{pmatrix} 0 & 1 \end{pmatrix}$

and the derivative of g at (1, -1) is given by

$$g'(1,-1) = -A_x^{-1}A_y = -(1)^{-1}(0 \ 1) = (0 \ -1).$$

Therefore, $D_1g(1, -1) = 0$ and $D_2g(1, -1) = -1$.

Problem 5:

Show that tangent vectors can be realized as velocity vectors of curves. More precisely, let U be an open set in \mathbb{R}^n . Let g be a C^1 map $U \to \mathbb{R}^m$. Let c a point in the image of $g, M = g^{-1}(c)$ and $p \in M$ such that g'(p) is surjective. Recall that T_pM = the kernel of g'(p) is called the tangent space of M at p. Show that this tangent space is spanned by the velocity vectors of all C^1 paths γ in M based at p, i.e., by $\gamma'(0)$, where $\gamma : (-\epsilon, \epsilon) \to M$ is a C^1 function with $\gamma(0) = p$. Hint: use implicit function theorem to get the desired curve in the dependent coordinate.

Solution 5:

Let $\gamma: (-\epsilon, \epsilon) \to M$ be a C^1 path based at p, i.e., $\gamma(0) = p$. Define $F: (-\epsilon, \epsilon) \to \mathbb{R}^n$ by $F(t) = g(\gamma(t))$. Then F(0) = c and $F'(0) = g'(\gamma(0))\gamma'(0) = g'(p)\gamma'(0) = 0$ since $\gamma'(0) \in T_p M$. By the implicit function theorem, there exists a C^1 function $\phi: (-\epsilon, \epsilon) \to \mathbb{R}^{n-m}$ such that F(t) = c if and only if $\gamma(t) = \phi(t)$. Moreover, we have $\phi(0) = 0$ and $\phi'(0) = -(DF|_p)^{-1}g'(p)\gamma'(0)$, where $DF|_p$ denotes the derivative of F at t = 0. Since g'(p) is surjective, $DF|_p$ is injective, so $(DF|_p)^{-1}$ exists. Therefore, $\phi'(0)$ is uniquely determined by $\gamma'(0)$, and we can express $\gamma'(0)$ in terms of $\phi'(0)$ as follows:

$$\gamma'(0) = -g'(p)^{-1}(DF|_p)\phi'(0).$$

Since $\phi'(0) \in \mathbb{R}^{n-m}$, we see that $\gamma'(0) \in T_p M$. Thus, every C^1 path γ in M based at p gives rise to a tangent vector $\gamma'(0)$, and the tangent space $T_p M$ is spanned by the velocity vectors of all such paths.

Conversely, let $v \in T_p M$ be a tangent vector at $p \in M$. By definition of the tangent space, there exists a C^1 path $\gamma : (-\epsilon, \epsilon) \to M$ based at p such that $\gamma'(0) = v$. Let $\phi(t) = tv$ for $t \in (-\epsilon, \epsilon)$. Then $\phi(0) = 0$ and $\phi'(0) = v$. We want to find a C^1 path $\tilde{\gamma}$ in M based at p such that $\tilde{\gamma}'(0) = v$. By the implicit function theorem, we can solve for $\tilde{\gamma}$ by setting

$$F(t,x) = \gamma(t) - x = 0$$

and taking $x = \tilde{\gamma}(t)$. Then

$$\frac{d}{dt}F(t,\tilde{\gamma}(t)) = \gamma'(t) - \tilde{\gamma}'(t) = 0,$$

so $\tilde{\gamma}'(0) = \gamma'(0) = v$, as desired. Therefore, we have shown that the tangent space $T_p M$ is indeed spanned by the velocity vectors of C^1 paths in M based at p.