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Problem 1:
If f(0, 0) = 0 and

f(x, y) = xy

x2 + y2 if (x, y) ̸= (0, 0)

Prove that (D1f)(x, y) and (D2f)(x, y) exist at every point of R2, although f is not
continuous at (0, 0).

Solution 1:
For (x, y) ̸= (0, 0), we have

(D1f)(x, y) = ∂f(x, y)
∂x

= (x2 + y2)y − (xy)(2x)
(x2 + y2)2 = y(y2 − x2)

(x2 + y2)2

and similarly,

(D2f)(x, y) = ∂f(x, y)
∂y

= (x2 + y2)x − (xy)(2y)
(x2 + y2)2 = x(x2 − y2)

(x2 + y2)2

For (x, y) = (0, 0), we have,

(D1f)(0, 0) = lim
h→0

f(h, 0) − f(0, 0)
h

= 0

and similarly,
(D2f)(0, 0) = lim

h→0

f(0, h) − f(0, 0)
h

= 0

i.e., the partial derivatives (D1f)(x, y) and (D2f)(x, y) exist at every (x, y) ∈ R2. How-
ever, if xn = ( 1

n
, 1

n
), then xn → (0, 0) as n → ∞ but,

lim
n→∞

f(xn) = lim
n→∞

f
( 1

n
,

1
n

)
= lim

n→∞

1/n2

2/n2 = 1
2 ̸= (0, 0)

and therefore, f is not continuous at (0, 0). ■

Problem 2:
Suppose that f is a real-valued function defined in an open set E ⊂ Rn, and that the
partial derivatives D1f1, . . . , Dnfn are bounded in E. Prove that f is continuous in E.

Solution 2:
To prove that f is continuous in E, we need to show that for any point x ∈ E and any
ϵ > 0, there exists a δ > 0 such that |f(y) − f(x)| < ϵ whenever y ∈ E and |y − x| < δ.

Fix a point x ∈ E and ϵ > 0. Since Difj are bounded in E, we have |Difj| ≤ Mi

for 1 ≤ i, j ≤ n. Let h = ∑n
j=1 hjej be a vector in Rn with |h| < δ, where δ = ϵ

nM
and

M = max1≤i≤n Mi. Put v0 = 0 and vk = ∑k
i=1 hiei. Then we have

f(x + h) − f(x) =
n∑

j=1
[f(x + vj) − f(x + vj−1)]
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Since vj = vj−1 + hjej, the mean value theorem gives

f(x + vj) − f(x + vj−1) = hjDjf(x + vj−1 + θjhjej)

for some θj ∈ (0, 1). Therefore,

|f(x + h) − f(x)| =

∣∣∣∣∣∣
n∑

j=1
[f(x + vj) − f(x + vj−1)]

∣∣∣∣∣∣
≤

n∑
j=1

|f(x + vj) − f(x + vj−1)|

=
n∑

j=1
|hj(Djf)(x + vj−1 + θjhjej)|

≤ M
n∑

j=1
|hj|

≤ Mn|h| < ϵ

This implies that f is continuous in E ⊂ Rn. ■

Problem 3:
Suppose that f is a differentiable real function in an open set E ⊂ Rn, and that f has a
local maximum at a point x ∈ E. Prove that f ′(x) = 0.

Solution 3:
Suppose that f is a differentiable real function in an open set E ⊂ Rn, and that f has a
local maximum at a point x ∈ E. We want to show that f ′(x) = 0.

By the definition of a local maximum, there exists a ball Br(x) ⊂ E around x such
that f(x) ≥ f(y) for all y ∈ Br(x) ⊂ E. Consider the function g(t) = f(x + tej) for
1 ≤ j ≤ n, where ej is the jth standard basis vector in Rn. Since Br(x) ⊂ E, we have
x + tej ∈ Br(x) for all t such that |t| < r. Thus, g(t) ≤ f(x) for all t such that |t| < r.

By the definition of the derivative, we have

Djf(x) = lim
t→0

f(x + tej) − f(x)
t

.

Using the function g defined above, we have

Djf(x) = lim
t→0

g(t) − g(0)
t

.

Since g(t) ≤ f(x) for all t such that |t| < r, we have
g(t) − g(0)

t
≤ f(x) − f(x + tej)

t
≤ 0

for all t such that |t| < r. Taking the limit as t → 0, we have

Djf(x) ≤ 0.

Similarly, we can show that Djf(x) ≥ 0 by considering the function h(t) = f(x − tej)
and using the same argument.

Thus, we have Djf(x) = 0 for 1 ≤ j ≤ n. It follows by Theorem 9.17 that f ′(x) = 0.
■
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Problem 4:
If f is a real function defined in a convex open set E ⊂ Rn, such that (D1f)(x) = 0 for
every x ∈ E, prove that f(x) depends only on x2, . . . , xn.

Show that the convexity of E can be replaced by a weaker condition, but that some
condition is required. For example, if n = 2 and E is shaped like a horseshoe, the
statement may be false.

Solution 4:
Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ E be two points such that xi = yi for 2 ≤ i ≤ n.
Consider the function g : [0, 1] → E defined by g(t) = (tx1 + (1 − t)y1, x2, . . . , xn). Since
E is convex, g(t) ∈ E for every t ∈ [0, 1].

By the chain rule, we have
d

dt
f(g(t)) = ∇f(g(t)) · d

dt
g(t)

= (D1f)(g(t)) d

dt
(tx1 + (1 − t)y1) +

n∑
j=2

(Djf)(g(t)) d

dt
xj

= (D1f)(g(t))(x1 − y1),

where we have used the fact that (D1f)(x) = 0 for every x ∈ E and that d
dt

xj = d
dt

yj = 0
for 2 ≤ j ≤ n.

Since f is defined in a convex set, the line segment connecting x and y is contained
in E. Hence, we can apply the mean value theorem to the function t 7→ f(g(t)) to get

f(x) − f(y) = f(g(1)) − f(g(0)) = d

dt
f(g(t0))(1 − 0) = (D1f)(g(t0))(x1 − y1),

for some t0 ∈ (0, 1). But (D1f)(g(t0)) = 0, so f(x) − f(y) = 0. Therefore, f has the
same value at any two points in E that have the same values for x2, . . . , xn. Hence, f
depends only on x2, . . . , xn.

The convexity of E can be replaced by the weaker condition that E is connected.
However, some condition is required, as the statement is false if n = 2 and E is shaped
like a horseshoe. In this case, E is connected but f can have different values at points
with the same values for x2. For example, consider the function f(x, y) = x2 − y2 defined
on the horseshoe-shaped set E = (x, y) ∈ R2 : x2 − y2 < 1, x ̸= 0. At any point (x, y) ∈ E
with x ̸= 0, we have (D1f)(x, y) = 2x ̸= 0, but f depends on both x and y. ■

Problem 5:
Put f(0, 0) = 0, and

f(x, y) = xy(x2 − y2)
x2 + y2

if (x, y) ̸= (0, 0). Prove that
(a) f , D1f and D2f are continuous in R2;

(b) D12f and D21f exist at every point of R2, and are continuous everywhere except
at (0, 0);

(c) (D12f)(0, 0) = 1, and (D21f)(0, 0) = −1.
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Solution 5:
(a) Clearly, f is continuous at every point (x, y) ∈ R2 other than (0, 0). Since

|xy| ≤ x2 + y2

2 ,

so for (x, y) ̸= (0, 0), we have

|f(x, y)| = xy(x2 − y2)
x2 + y2 ≤ |xy| · |x2 − y2|

x2 + y2 ≤ 1
2 |x2 − y2|.

Therefore,
lim

(x,y)→(0,0)
|f(x, y)| ≤ lim

(x,y)→(0,0)

(1
2 |x2 − y2|

)
= 0

and hence,
lim

(x,y)→(0,0)
f(x, y) = 0 = f(0, 0)

i.e., f is continuous at (0, 0). Therefore, f is continuous in R2.
For (x, y) ̸= (0, 0), we have

D1f(x, y) = ∂f(x, y)
∂x

= (x2 + y2) · y(3x2 − y2) − xy(x2 − y2) · 2x

(x2 + y2)2 = y(x4 + 4x2y2 − y4)
(x2 + y2)2

and,

D2f(x, y) = ∂f(x, y)
∂y

= (x2 + y2) · x(x2 − 3y2) − xy(x2 − y2) · 2y

(x2 + y2)2 = x(x4 − 4x2y2 − y4)
(x2 + y2)2

which are clearly continuous for (x, y) ̸= (0, 0).
Therefore,

|D1f(x, y)| = |y| · |x4 + 4x2y2 − y4|
(x2 + y2)2

≤ |y|
(

|x4 − y4|
(x2 + y2)2 + 4x2y2

(x2 + y2)2

)

= |y|
(

|x2 − y2|
x2 + y2 + 4x2y2

(x2 + y2)2

)
≤ |y|(1 + 1) = 2|y|

and similarly,
|D2f(x, y)| ≤ 2|x|

Now, for (x, y) = (0, 0), we have

D1f(0, 0) = lim
h→0

f(h, 0) − f(0, 0)
h

= lim
h→0

0 − 0
h

= 0

and
D2f(0, 0) = lim

h→0

f(0, h) − f(0, 0)
h

= lim
h→0

0 − 0
h

= 0
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Therefore,
lim

(x,y)→(0,0)
|D1f(x, y)| ≤ lim

(x,y)→(0,0)
(2|x|) = 0

and,
lim

(x,y)→(0,0)
|D2f(x, y)| ≤ lim

(x,y)→(0,0)
(2|y|) = 0.

This gives
lim

(x,y)→(0,0)
D1f(x, y) = 0 = D1f(0, 0)

and
lim

(x,y)→(0,0)
D2f(x, y) = 0 = D2f(0, 0)

i.e., D1f and D2f are also continuous at (0, 0). Therefore, D1f and D2f are con-
tinuous in R2.

(b) For (x, y) ̸= (0, 0), we have

D12f(x, y) = D1D2f(x, y)

= ∂

∂x

[
x5 − 4x3y2 − xy4

(x2 + y2)2

]

= (x2 + y2)2(5x4 − 12x2y2 − y4) − (x5 − 4x3y2 − xy4) · 2(x2 + y2) · 2x

(x2 + y2)4

= x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

and similarly,

D21f(x, y) = D2D1f(x, y)

= ∂

∂y

[
y(x4 + 4x2y2 − y4)

(x2 + y2)2

]

= (x2 + y2)2(x4 + 12x2y2 − 5y4) − (x4y + 4x2y3 − y5) · 2(x2 + y2) · 2y

(x2 + y2)2

= x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

which are clearly continuous for (x, y) ̸= (0, 0). We have,

D12f(0, 0) = lim
h→0

D2f(h, 0) − D2f(0, 0)
h

= lim
h→0

h4

h4 = 1

and
D21f(0, 0) = lim

h→0

D1f(0, h) − D1f(0, 0)
h

= lim
h→0

−h4

h4 = −1

Now if xn = ( 1
n
, 1

n
) and yn = ( 1

n
, 1

n2 ), then

D12f(xn) = 0 ̸= 1 and D21f(yn) = 1 ̸= −1

Therefore, D12f and D21f are continuous everywhere except at (0, 0).

(c) This has been showed in (b). ■
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