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Problem 1:

If £(0,0) =0 and

flay) = g i (@.9) #(0,0)

Prove that (Dyf)(x,y) and (Dof)(z,y) exist at every point of R? although f is not
continuous at (0,0).

Solution 1:

For (z,y) # (0,0), we have

COf(xy) @@+ — (ay)(22)  y(y® —2?)
(le)(x,y) = or = (xg +y2)2 - (mQ +y2)2

and similarly,

~O0f(xy) (@4 yP)r = (2y)(2y)  x(2® —y?)
(sz)(fay) = By = (mg I yz)z - (x2 I y2)2

For (z,y) = (0,0), we have,
f(h>0) — f(()?O)

(D1£)(0,0) = lim - =0
and similarly,

h

i.e., the partial derivatives (D, f)(x,y) and (Dyf)(z,y) exist at every (x,y) € R% How-
ever, if x,, = (£, 1), then x,, — (0,0) as n — oo but,

n’n

lim f(x,) = lim f(l,l) — w27 L 0.0

n—00 n—o0 n—00 2/n2 2

and therefore, f is not continuous at (0, 0). [ |

Problem 2:

Suppose that f is a real-valued function defined in an open set £ C R", and that the
partial derivatives Dy f1,..., D, f, are bounded in E. Prove that f is continuous in F.

Solution 2:

To prove that f is continuous in E, we need to show that for any point x € E and any
€ > 0, there exists a § > 0 such that |f(y) — f(x)| < € whenever y € E and |y — x| < 0.

Fix a point x € E and € > 0. Since D, f; are bounded in E, we have |D;f;| < M,
for 1 <4,j <n. Let h = 3%, hje; be a vector in R™ with |h| < §, where 6 = < and
M = maxi<;<, M;. Put vo =0 and v}, = Zle h;e;. Then we have

ot h) = £(x) = St vy) — Fxt vy)]

J=1



Since v; = v;_;1 + h;e;, the mean value theorem gives
f(X + Vj) — f(X + Vj—l) = thjf(X + Vi-1 + Hjhjej)
for some 0; € (0,1). Therefore,
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[f(x+h) — f(x)|

< Mnlh| <e
This implies that f is continuous in £ C R™. [ |

Problem 3:

Suppose that f is a differentiable real function in an open set £ C R", and that f has a
local maximum at a point x € E. Prove that f'(x) = 0.

Solution 3:

Suppose that f is a differentiable real function in an open set £ C R", and that f has a
local maximum at a point x € . We want to show that f'(x) = 0.

By the definition of a local maximum, there exists a ball B,(x) C E around x such
that f(x) > f(y) for all y € B,(x) C E. Consider the function ¢(t) = f(x + te;) for
1 < j < n, where e; is the j™ standard basis vector in R". Since B,(x) C E, we have
X + te; € B,(x) for all ¢ such that |t| < r. Thus, g(t) < f(x) for all ¢ such that || < 7.

By the definition of the derivative, we have

D, )ty L1~ )

t—0 t

Using the function g defined above, we have

D;f(x) = lim M

t—0 t
Since g(t) < f(x) for all ¢ such that |t| < r, we have

9(t) —9(0) _ f(x) = f(x +tey)

<0
t - t -
for all ¢ such that |¢| < r. Taking the limit as ¢ — 0, we have
D;f(x) <0.

Similarly, we can show that D;f(x) > 0 by considering the function h(t) = f(x — te;)
and using the same argument.

Thus, we have D; f(x) =0 for 1 < j < n. It follows by Theorem 9.17 that f’(x) = 0.
[



Problem 4:

If f is a real function defined in a convex open set £ C R", such that (D;f)(x) = 0 for
every X € F, prove that f(x) depends only on zy, ..., x,.

Show that the convexity of E can be replaced by a weaker condition, but that some
condition is required. For example, if n = 2 and F is shaped like a horseshoe, the
statement may be false.

Solution 4:

Let x = (z1,...,2,),¥y = (Y1,...,Yn) € E be two points such that z; = y; for 2 <i < n.
Consider the function g : [0, 1] — E defined by ¢(¢) = (tz1 + (1 — t)y1, 22, ..., x,). Since
E is convex, g(t) € E for every t € [0, 1].

By the chain rule, we have

% flo(t)) = V£a(t)) - ol
= (D)ol Gt + (1= ) + D, Nlo(0) e,

= (D1f)(g(®) (21 = ),

where we have used the fact that (D; f)(x) = 0 for every x € E and that Lz; = Ly; =0
for 2 < j <n.

Since f is defined in a convex set, the line segment connecting x and y is contained
in . Hence, we can apply the mean value theorem to the function ¢t — f(g(t)) to get

Fx) = £(y) = F(9(1)) — F(9(0)) = & F(glt))(1 — 0) = (Du)(o(to)) (1 — v2),

for some ty € (0,1). But (D1f)(g(to)) = 0, so f(x) — f(y) = 0. Therefore, f has the
same value at any two points in E that have the same values for x,,...,x,. Hence, f
depends only on xs, ..., z,.

The convexity of E can be replaced by the weaker condition that E is connected.
However, some condition is required, as the statement is false if n = 2 and F is shaped
like a horseshoe. In this case, E is connected but f can have different values at points
with the same values for xy. For example, consider the function f(x,y) = 2* — y? defined
on the horseshoe-shaped set £ = (z,y) € R? : 2% — y?> < 1,2 # 0. At any point (z,y) € E

with x # 0, we have (D;f)(x,y) = 2x # 0, but f depends on both z and y. [ |
Problem 5:
Put f(0,0) =0, and
vy(z? — y°)
flzy) = T2

if (z,y) # (0,0). Prove that
(a) f, Dif and D,f are continuous in R?;

(b) Diof and Dy f exist at every point of R? and are continuous everywhere except
at (0,0);

(C) (Dlgf)(o,()) == 1, and (Dglf)(0,0) =—1.



Solution 5:

(a) Clearly, f is continuous at every point (z,y) € R? other than (0,0). Since

2 2
joy| < = ;ry

so for (z,y) # (0,0), we have

2,2 . 2,2

2
2y T 2?4y T2 |

|z, 9)| = -yl

Therefore,

1
lim x, < lim (:1;2— 2)20
(ay)ﬁ(om‘f( vl T (2)—(0,0) 2’ vl
and hence,
lim x,y)=0= f(0,0
e o @) £(0,0)

i.e., f is continuous at (0,0). Therefore, f is continuous in R2.
For (z,y) # (0,0), we have

_Of(wy) _ (@ +9?) - yBa® —y?) —ay(@® —y?) -2z y(at +4a%y® — oY)

Dy f(x,y) or (22 + y2)? = (7 1 47)°
and,
Dufiey) = @) _ @49 ale® = 32) —ay(e? =) 2y _ ol — 4%y — )

Ay (a2 +42)? @)
which are clearly continuous for (z,y) # (0,0).

Therefore,

ly| - ot + 4a?y® — ¢
D =
’ 1f(;1:,y)| (513‘2 + y2)2

4 4 A2
(362—1-3/2)2 (x2+y2)2

_ |y’ <|‘T2 _ yQ‘ + 41’2y2 )

x2+y2 (x2+y2)2
< [yl(1+1) = 2Jy|

and similarly,
| Daf (z,y)] < 2|z|

Now, for (z,y) = (0,0), we have

h,0) — £(0,0 . 0-0
Du7(0.0) = i KRS <y £

and
h h—0 h




Therefore,
i D)l <l (2l =0

(z,y)—(0,0) (z,y)—(0,0
and,
lim |Dsf(zx, < lim (2 = 0.
e IDef (@ y)l < |l (2]y])
This gives
lim D;f(x,y) =0=D1f(0,0
JJimDiflay) = 0= Dif (0.0
and

lim )Dgf(x,y) =0= Dyf(0,0)

(z,y)—(0,0
i.e., Dif and Dyf are also continuous at (0,0). Therefore, Dy f and Dy f are con-

tinuous in R2.

(b) For (z,y) # (0,0), we have

Dlzf(x>y) = D1D2f(33a y)
B 0 [ZL‘E) — 4a3y? — xyj

- 37% <x2 n y2)2
(@) (5t — 12277 — yt) — (2° — 4ty —ayt) - 2(a® 4 4P) - 2o
- (332 i y2)4

28 + 9xty? — 9x2y* — o8
(@2 + y2)°

and similarly,

Dy f(x,y) = DaDy f(2,y)
0 [yt +42?y® — )
Oy (=% +y?)
_ (@ +y?)P ! +120%y% — byt) — (aly + 4Py’ —y°) - 2(a® + ) - 2y
(22 + 42)2

_ 28 4+ 9zty? — 92yt — o8
(22 + y2)°

which are clearly continuous for (x,y) # (0,0). We have,

. Dof(h,0) — D5f(0,0 -kt
D12f(0’0):}z% 2f( )h 2f( ):}lg%mzl

. D1 f(0,h) — D1 f(0,0) ht
Daf(0.0)= iy ZEREE SRS <y =

Now if x, = (£, 1) and y, = (£, 55), then
D12f<Xn) =0 % 1 and D21f(yn) =1 % —1
Therefore, Do f and Do f are continuous everywhere except at (0,0).

(c¢) This has been showed in (b). [ |



