Analysis II HW 2

Nirjhar Nath BMC202239 nirjhar@cmi.ac.in

Problem 1:

If $f(0,0) = 0$ and

$$
f(x,y) = \frac{xy}{x^2 + y^2}
$$
 if $(x, y) \neq (0, 0)$

Prove that $(D_1 f)(x, y)$ and $(D_2 f)(x, y)$ exist at every point of \mathbb{R}^2 , although f is not continuous at (0*,* 0).

Solution 1:

For $(x, y) \neq (0, 0)$, we have

$$
(D_1 f)(x, y) = \frac{\partial f(x, y)}{\partial x} = \frac{(x^2 + y^2)y - (xy)(2x)}{(x^2 + y^2)^2} = \frac{y(y^2 - x^2)}{(x^2 + y^2)^2}
$$

and similarly,

$$
(D_2 f)(x, y) = \frac{\partial f(x, y)}{\partial y} = \frac{(x^2 + y^2)x - (xy)(2y)}{(x^2 + y^2)^2} = \frac{x(x^2 - y^2)}{(x^2 + y^2)^2}
$$

For $(x, y) = (0, 0)$, we have,

$$
(D_1 f)(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0
$$

and similarly,

$$
(D_2 f)(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = 0
$$

i.e., the partial derivatives $(D_1 f)(x, y)$ and $(D_2 f)(x, y)$ exist at every $(x, y) \in \mathbb{R}^2$. However, if $\mathbf{x}_n = (\frac{1}{n}, \frac{1}{n})$ $\frac{1}{n}$, then $\mathbf{x}_n \to (0,0)$ as $n \to \infty$ but,

$$
\lim_{n \to \infty} f(\mathbf{x}_n) = \lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{n}\right) = \lim_{n \to \infty} \frac{1/n^2}{2/n^2} = \frac{1}{2} \neq (0, 0)
$$

and therefore, f is not continuous at $(0, 0)$.

Problem 2:

Suppose that *f* is a real-valued function defined in an open set $E \subset \mathbb{R}^n$, and that the partial derivatives $D_1 f_1, \ldots, D_n f_n$ are bounded in *E*. Prove that *f* is continuous in *E*.

Solution 2:

To prove that *f* is continuous in *E*, we need to show that for any point $x \in E$ and any $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(\mathbf{y}) - f(\mathbf{x})| < \epsilon$ whenever $\mathbf{y} \in E$ and $|\mathbf{y} - \mathbf{x}| < \delta$.

Fix a point $\mathbf{x} \in E$ and $\epsilon > 0$. Since $D_i f_j$ are bounded in E, we have $|D_i f_j| \leq M_i$ for $1 \leq i, j \leq n$. Let $\mathbf{h} = \sum_{j=1}^{n} h_j \mathbf{e}_j$ be a vector in \mathbb{R}^n with $|\mathbf{h}| < \delta$, where $\delta = \frac{\epsilon}{nM}$ and $M = \max_{1 \leq i \leq n} M_i$. Put $\mathbf{v}_0 = \mathbf{0}$ and $\mathbf{v}_k = \sum_{i=1}^k h_i \mathbf{e}_i$. Then we have

$$
f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = \sum_{j=1}^{n} [f(\mathbf{x} + \mathbf{v}_j) - f(\mathbf{x} + \mathbf{v}_{j-1})]
$$

Since $\mathbf{v}_j = \mathbf{v}_{j-1} + h_j \mathbf{e}_j$, the mean value theorem gives

$$
f(\mathbf{x} + \mathbf{v}_j) - f(\mathbf{x} + \mathbf{v}_{j-1}) = h_j D_j f(\mathbf{x} + \mathbf{v}_{j-1} + \theta_j h_j \mathbf{e}_j)
$$

for some $\theta_j \in (0,1)$. Therefore,

$$
|f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})| = \left| \sum_{j=1}^{n} [f(\mathbf{x} + \mathbf{v}_j) - f(\mathbf{x} + \mathbf{v}_{j-1})] \right|
$$

\n
$$
\leq \sum_{j=1}^{n} |f(\mathbf{x} + \mathbf{v}_j) - f(\mathbf{x} + \mathbf{v}_{j-1})|
$$

\n
$$
= \sum_{j=1}^{n} |h_j(D_j f)(\mathbf{x} + \mathbf{v}_{j-1} + \theta_j h_j \mathbf{e}_j)|
$$

\n
$$
\leq M \sum_{j=1}^{n} |h_j|
$$

\n
$$
\leq M n |\mathbf{h}| < \epsilon
$$

This implies that *f* is continuous in $E \subset \mathbb{R}^n$. **A** $\mathbf{a} = \mathbf{a} \cdot \mathbf{a}$ and $\mathbf{a} = \mathbf{a} \cdot \mathbf{a}$ and $\mathbf{a} = \mathbf{a} \cdot \mathbf{a}$

Problem 3:

Suppose that *f* is a differentiable real function in an open set $E \subset \mathbb{R}^n$, and that *f* has a local maximum at a point $\mathbf{x} \in E$. Prove that $f'(\mathbf{x}) = 0$.

Solution 3:

Suppose that *f* is a differentiable real function in an open set $E \subset \mathbb{R}^n$, and that *f* has a local maximum at a point $\mathbf{x} \in E$. We want to show that $f'(\mathbf{x}) = \mathbf{0}$.

By the definition of a local maximum, there exists a ball $B_r(\mathbf{x}) \subset E$ around **x** such that $f(\mathbf{x}) \geq f(\mathbf{y})$ for all $\mathbf{y} \in B_r(\mathbf{x}) \subset E$. Consider the function $g(t) = f(\mathbf{x} + t\mathbf{e}_j)$ for 1 ≤ *j* ≤ *n*, where e_j is the *j*th standard basis vector in \mathbb{R}^n . Since $B_r(\mathbf{x}) \subset E$, we have $\mathbf{x} + t\mathbf{e}_j \in B_r(\mathbf{x})$ for all *t* such that $|t| < r$. Thus, $g(t) \leq f(\mathbf{x})$ for all *t* such that $|t| < r$.

By the definition of the derivative, we have

$$
D_j f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e}_j) - f(\mathbf{x})}{t}.
$$

Using the function *g* defined above, we have

$$
D_j f(\mathbf{x}) = \lim_{t \to 0} \frac{g(t) - g(0)}{t}.
$$

Since $q(t) \leq f(\mathbf{x})$ for all *t* such that $|t| \leq r$, we have

$$
\frac{g(t) - g(0)}{t} \le \frac{f(\mathbf{x}) - f(\mathbf{x} + t\mathbf{e}_j)}{t} \le 0
$$

for all *t* such that $|t| < r$. Taking the limit as $t \to 0$, we have

$$
D_j f(\mathbf{x}) \leq 0.
$$

Similarly, we can show that $D_j f(\mathbf{x}) \geq 0$ by considering the function $h(t) = f(\mathbf{x} - t\mathbf{e}_j)$ and using the same argument.

Thus, we have $D_j f(\mathbf{x}) = 0$ for $1 \leq j \leq n$. It follows by Theorem 9.17 that $f'(\mathbf{x}) = 0$. ■

Problem 4:

If *f* is a real function defined in a convex open set $E \subset \mathbb{R}^n$, such that $(D_1 f)(\mathbf{x}) = 0$ for every $\mathbf{x} \in E$, prove that $f(\mathbf{x})$ depends only on x_2, \ldots, x_n .

Show that the convexity of *E* can be replaced by a weaker condition, but that some condition is required. For example, if $n = 2$ and E is shaped like a horseshoe, the statement may be false.

Solution 4:

Let $\mathbf{x} = (x_1, \ldots, x_n), \mathbf{y} = (y_1, \ldots, y_n) \in E$ be two points such that $x_i = y_i$ for $2 \leq i \leq n$. Consider the function $g : [0, 1] \to E$ defined by $g(t) = (tx_1 + (1-t)y_1, x_2, \ldots, x_n)$. Since *E* is convex, $g(t) \in E$ for every $t \in [0, 1]$.

By the chain rule, we have

$$
\frac{d}{dt}f(g(t)) = \nabla f(g(t)) \cdot \frac{d}{dt}g(t)
$$
\n
$$
= (D_1 f)(g(t)) \frac{d}{dt}(tx_1 + (1-t)y_1) + \sum_{j=2}^n (D_j f)(g(t)) \frac{d}{dt}x_j
$$
\n
$$
= (D_1 f)(g(t))(x_1 - y_1),
$$

where we have used the fact that $(D_1 f)(\mathbf{x}) = 0$ for every $\mathbf{x} \in E$ and that $\frac{d}{dt} x_j = \frac{d}{dt} y_j = 0$ for $2 \leq j \leq n$.

Since *f* is defined in a convex set, the line segment connecting **x** and **y** is contained in *E*. Hence, we can apply the mean value theorem to the function $t \mapsto f(q(t))$ to get

$$
f(\mathbf{x}) - f(\mathbf{y}) = f(g(1)) - f(g(0)) = \frac{d}{dt} f(g(t_0)) (1 - 0) = (D_1 f)(g(t_0)) (x_1 - y_1),
$$

for some $t_0 \in (0,1)$. But $(D_1 f)(g(t_0)) = 0$, so $f(\mathbf{x}) - f(\mathbf{y}) = 0$. Therefore, f has the same value at any two points in *E* that have the same values for x_2, \ldots, x_n . Hence, *f* depends only on x_2, \ldots, x_n .

The convexity of *E* can be replaced by the weaker condition that *E* is connected. However, some condition is required, as the statement is false if $n = 2$ and E is shaped like a horseshoe. In this case, E is connected but f can have different values at points with the same values for x_2 . For example, consider the function $f(x, y) = x^2 - y^2$ defined on the horseshoe-shaped set $E = (x, y) \in \mathbb{R}^2 : x^2 - y^2 < 1, x \neq 0$. At any point $(x, y) \in E$ with $x \neq 0$, we have $(D_1 f)(x, y) = 2x \neq 0$, but *f* depends on both *x* and *y*.

Problem 5:

Put $f(0, 0) = 0$, and

$$
f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}
$$

if $(x, y) \neq (0, 0)$. Prove that

- (a) f , $D_1 f$ and $D_2 f$ are continuous in \mathbb{R}^2 ;
- (b) $D_{12}f$ and $D_{21}f$ exist at every point of \mathbb{R}^2 , and are continuous everywhere except at (0*,* 0);
- (c) $(D_{12}f)(0,0) = 1$, and $(D_{21}f)(0,0) = -1$.

Solution 5:

(a) Clearly, *f* is continuous at every point $(x, y) \in \mathbb{R}^2$ other than $(0, 0)$. Since

$$
|xy| \le \frac{x^2 + y^2}{2},
$$

so for $(x, y) \neq (0, 0)$, we have

$$
|f(x,y)| = \frac{xy(x^2 - y^2)}{x^2 + y^2} \le \frac{|xy| \cdot |x^2 - y^2|}{x^2 + y^2} \le \frac{1}{2}|x^2 - y^2|.
$$

Therefore,

$$
\lim_{(x,y)\to(0,0)}|f(x,y)| \le \lim_{(x,y)\to(0,0)}\left(\frac{1}{2}|x^2-y^2|\right) = 0
$$

and hence,

$$
\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)
$$

i.e., *f* is continuous at $(0,0)$. Therefore, *f* is continuous in \mathbb{R}^2 . For $(x, y) \neq (0, 0)$, we have

$$
D_1 f(x,y) = \frac{\partial f(x,y)}{\partial x} = \frac{(x^2 + y^2) \cdot y(3x^2 - y^2) - xy(x^2 - y^2) \cdot 2x}{(x^2 + y^2)^2} = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}
$$

and,

$$
D_2 f(x,y) = \frac{\partial f(x,y)}{\partial y} = \frac{(x^2 + y^2) \cdot x(x^2 - 3y^2) - xy(x^2 - y^2) \cdot 2y}{(x^2 + y^2)^2} = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}
$$

which are clearly continuous for $(x, y) \neq (0, 0)$.

Therefore,

$$
|D_1 f(x, y)| = \frac{|y| \cdot |x^4 + 4x^2y^2 - y^4|}{(x^2 + y^2)^2}
$$

\n
$$
\leq |y| \left(\frac{|x^4 - y^4|}{(x^2 + y^2)^2} + \frac{4x^2y^2}{(x^2 + y^2)^2} \right)
$$

\n
$$
= |y| \left(\frac{|x^2 - y^2|}{x^2 + y^2} + \frac{4x^2y^2}{(x^2 + y^2)^2} \right)
$$

\n
$$
\leq |y|(1 + 1) = 2|y|
$$

and similarly,

$$
|D_2f(x,y)|\leq 2|x|
$$

Now, for $(x, y) = (0, 0)$, we have

$$
D_1 f(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0
$$

and

$$
D_2 f(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0
$$

Therefore,

$$
\lim_{(x,y)\to(0,0)}|D_1f(x,y)| \le \lim_{(x,y)\to(0,0)}(2|x|) = 0
$$

and,

$$
\lim_{(x,y)\to(0,0)}|D_2f(x,y)| \le \lim_{(x,y)\to(0,0)}(2|y|) = 0.
$$

This gives

$$
\lim_{(x,y)\to(0,0)} D_1 f(x,y) = 0 = D_1 f(0,0)
$$

and

$$
\lim_{(x,y)\to(0,0)} D_2 f(x,y) = 0 = D_2 f(0,0)
$$

i.e., $D_1 f$ and $D_2 f$ are also continuous at $(0,0)$. Therefore, $D_1 f$ and $D_2 f$ are continuous in \mathbb{R}^2 .

(b) For $(x, y) \neq (0, 0)$, we have

$$
D_{12}f(x,y) = D_1 D_2 f(x,y)
$$

= $\frac{\partial}{\partial x} \left[\frac{x^5 - 4x^3y^2 - xy^4}{(x^2 + y^2)^2} \right]$
= $\frac{(x^2 + y^2)^2 (5x^4 - 12x^2y^2 - y^4) - (x^5 - 4x^3y^2 - xy^4) \cdot 2(x^2 + y^2) \cdot 2x}{(x^2 + y^2)^4}$
= $\frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}$

and similarly,

$$
D_{21}f(x,y) = D_2D_1f(x,y)
$$

= $\frac{\partial}{\partial y} \left[\frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2} \right]$
= $\frac{(x^2 + y^2)^2(x^4 + 12x^2y^2 - 5y^4) - (x^4y + 4x^2y^3 - y^5) \cdot 2(x^2 + y^2) \cdot 2y}{(x^2 + y^2)^2}$
= $\frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}$

which are clearly continuous for $(x, y) \neq (0, 0)$. We have,

$$
D_{12}f(0,0) = \lim_{h \to 0} \frac{D_2f(h,0) - D_2f(0,0)}{h} = \lim_{h \to 0} \frac{h^4}{h^4} = 1
$$

and

$$
D_{21}f(0,0) = \lim_{h \to 0} \frac{D_1f(0,h) - D_1f(0,0)}{h} = \lim_{h \to 0} \frac{-h^4}{h^4} = -1
$$

Now if $\mathbf{x}_n = (\frac{1}{n}, \frac{1}{n})$ $\left(\frac{1}{n}\right)$ and $\mathbf{y}_n = \left(\frac{1}{n}, \frac{1}{n^2}\right)$, then

$$
D_{12}f(\mathbf{x}_n) = 0 \neq 1
$$
 and $D_{21}f(\mathbf{y}_n) = 1 \neq -1$

Therefore, $D_{12}f$ and $D_{21}f$ are continuous everywhere except at $(0,0)$.

(c) This has been showed in (b). \blacksquare