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Problem 1:
Complete the details of the following alternative proof of Theorem 4.19. If f is not
uniformly continuous, then for some ε > 0 there are sequences {pn}, {qn} in X such that
dX(pn, qn) → 0 but dY (f(pn), f(qn)) → ε. Use Theorem 2.37 to obtain a contradiction.

Solution 1:
Theorem 4.19. Let f be a continuous mapping of a compact metric space X into a
metric space Y . Then f is uniformly continuous on X.

Proof. If f is not uniformly continuous, then for some ε > 0 there are sequences {pn},
{qn} in X such that dX(pn, qn) → 0 but dX(pn, qn) > ε.

Since X is compact, then {pn} being an infinite subset of X, has a limit point (say
p) in X (using Theorem 2.37). Similarly, {qn} has a limit point (say q) in X. So, there
are subsequences {pni

} of {pn} and {qni
} of {qn}, converging to p and q respectively. We

have, by triangle inequality, as ni → ∞,

dX(p, q) ≤ dX(p, pni
) + dX(pni

, qni
) + dX(qni

, q) → 0

Therefore, dX(p, q) = 0, i.e., p = q. Now since f is continuous, so f(pni
) and f(qni

)
converge to f(p) = f(q). So we have, by triangle inequality, as ni → ∞,

dY (f(pni
), f(qni

)) ≤ dY (f(pni
), f(p)) + dY (f(p), f(qni

)) → 0

which contradicts dY (f(pni
), f(qni

)) > ε.

Problem 2:
If E is a nonempty subset of a metric space X, define the distance from x ∈ X to E by

ρE(x) = inf
z∈E

d(x, z).

(a) Prove that ρE(x) = 0 if and only if x ∈ E.

(b) Prove that ρE is a uniformly continuous function on X, by showing that

|ρE(x) − ρE(y)| ≤ d(x, y)

for all x ∈ X, y ∈ X.

Solution 2:
Proof of (a). First we shall prove that ρE(x) = 0 =⇒ x ∈ E. Assume, to the contrary,
that ρE(x) = 0 and x ̸∈ E. Then x ∈ E

C and since E is closed, so E
C is open. Therefore,

∃ r > 0 such that
d(y, x) < r =⇒ y ∈ E

C i.e., y ̸∈ E

Thus, for every z ∈ E, d(z, x) ≥ r and hence

ρE(x) = inf
z∈E

d(z, x) ≥ r > 0
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which is a contradiction to ρE(x) = 0.
Now we shall prove that x ∈ E =⇒ ρE(x) = 0. Suppose x ∈ E. If x ∈ E, then

ρE(x) = d(x, x) = 0

If x ̸∈ E, then x is a limit point of E. Then given any ε > 0, ∃ z ∈ E such that
d(z, x) < ε. Since every ε > 0 is not a lower bound of d(x, z), so

ρE(x) = inf
z∈E

d(x, z) = 0

Proof of (b). We have,
ρE(x) ≤ d(x, z) ≤ d(x, y) + d(y, z)

for any z ∈ E. Then,

ρE(x) = inf
z∈E

d(x, z) ≤ inf
z∈E

(d(x, y) + d(y, z)) = d(x, y) + ρE(y),

so
ρE(x) − ρE(y) ≤ d(x, y). (1)

By interchanging x and y, we also get

ρE(y) − ρE(x) ≤ d(x, y). (2)

Since |ρE(x) − ρE(y)| is either ρE(x) − ρE(y) or ρE(y) − ρE(x), so equations (1) and (2)
give

|ρE(x) − ρE(y)| ≤ d(x, y)

Now, for every ε > 0, take δ = ε. Then

d(x, y) < δ =⇒ d(x, y) < ε,

so
|ρE(x) − ρE(y)| < d(x, y) < ε ∀ x, y ∈ X

Thus, ρE is uniformly continuous on X.

Problem 3:
Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed. Prove
that there exists δ > 0 such that d(p, q) > δ if p ∈ K, q ∈ F .

Show that the conclusion may fail for two disjoint closed sets if neither is compact.

Solution 3:
We shall first prove that ρF is a continuous positive function on K. By Problem 2(b), we
have ρF is continuous on K. We have to show that ρF (p) ̸= 0 for every p ∈ K. Assume,
to the contrary, that ρF (q) = 0 for some q ∈ K. Then by Problem 2(a), we have q ∈ F .
Since F is closed, so F = F and hence q ∈ F , a contradiction since K and F are disjoint
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sets. Therefore, ρF is a continuous positive function on K. Also since K is compact, ρF

attains its minimum value on K, i.e., ∃ r ∈ K such that

ρF (r) = min
p∈K

ρF (p)

Let 0 < δ < ρF (q), then for any p ∈ K, q ∈ F , we have

d(p, q) ≥ ρF (p) ≥ ρF (r) > δ

The conclusion may fail for two disjoint closed sets if neither is compact. Consider
K = N and F = {n + 1

n
| n ∈ N, n > 1}. Then for pn ∈ K and qn ∈ F , we have

lim
n→∞

d(pn, qn) = lim
n→∞

1
n

= 0

i.e., ∄ δ > 0 such that d(p, q) > δ if p ∈ K, q ∈ F . □

Problem 4:
Let A and B be disjoint nonempty closed sets in a metric space X, and define

f(p) = ρA(p)
ρA(p) + ρB(p) (p ∈ X)

Show that f is a continuous function on X whose range lies in [0, 1], that f(p) = 0
precisely on A and f(p) = 1 precisely on B. This establishes a converse of Exercise 3:
Every closed set A ⊂ X is Z(f) for some continuous real f on X. Setting

V = f−1
([

0,
1
2

))
, W = f−1

((1
2 , 1

])
,

show that V and W are open and disjoint, and that A ⊂ V, B ⊂ W . (Thus pairs of
disjoint closed sets in a metric space can be covered by pairs of disjoint open sets. This
property of metric spaces is called normality.)

Solution 4:
We shall first prove that ρA(p) + ρB(p) ̸= 0 for every p ∈ X. Since A and B are closed,
so A = A and B = B. From Problem 2(a), we have ρA(p) = 0 if and only if p ∈ A = A
and ρB(p) = 0 if and only if p ∈ B = B. But since A and B are disjoint, it follows that
ρA(p) + ρB(p) ̸= 0. By Problem 2(b), we have ρA(p) is continuous and ρA(p) + ρB(p),
being a sum of two continuous functions and f(p), being a quotient of two continuous
functions are continuous (using Theorem 4.9), i.e., f is a continuous function on X, with
range in [0, 1].

Using Problem 2(a), since A is closed, we have A = A and hence ρA(p) = 0 for p ∈ A.
Since, ρA(p) + ρB(p) ̸= 0 for every p ∈ X, we have f(p) = 0 on A. Similarly, ρB(p) = 0
for p ∈ B. Since ρA(p) ̸= 0 when ρB(p) ̸= 0 for p ∈ X, therefore f(p) = ρA(p)

ρA(p) = 1.
Since

[
0, 1

2

)
is an open set in [0, 1], and since f is continuous, so V = f−1

([
0, 1

2

))
is

open. Similarly, f is continuous and
(

1
2 , 1

]
is open in [0, 1], so W is open. Now we shall

prove that V and W are disjoint. Suppose they are not, then there is a x ∈ X such that
x ∈ V and x ∈ W . But then, this gives f(x) ∈

[
0, 1

2

)
and f(x) ∈

(
1
2 , 1

]
, a contradiction.

Therefore, V and W are disjoint. Also, we have proved that p ∈ A =⇒ f(p) = 0, i.e.,
p = f−1(0) ∈ V . Therefore, A ⊂ V . Similarly, B ⊂ W because p ∈ B =⇒ f(p) = 1. □
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Problem 5:
Suppose X, Y, Z are metric spaces, and Y is compact. Let f map X into Y , let g be a
continuous one-to-one mapping of Y into Z, and put h(x) = g(f(x)) for x ∈ X.

Prove that f is uniformly continuous if h is uniformly continuous.
Prove also that f is continuous if h is continuous.
Show (by modifying Example 4.21, or by finding a different example) that the com-

pactness of Y cannot be omitted from the hypotheses, even when X and Z are compact.

Solution 5:
Since g : Y → Z is continuous and Y is compact, so by Theorem 4.14, g(Y ) is compact.
Also, since g is a continuous one-one mapping of a compact metric space Y onto Z, so
by Theorem 4.17, g−1 : g(Y ) → Y is continuous, and hence by Theorem 4.19, g−1 is
uniformly continuous. Now, since f(x) = g−1(h(x)), so f is uniformly continuous if h is
uniformly continuous.

We established that g−1 : g(Y ) → Y is continuous by Theorem 4.17. Since f(x) =
g−1(h(x)), so by Theorem 4.7, f is continuous if h is continuous.

As in Example 4.21, let X = [0, 2π], Y = [0, 2π) and Z be the unit circle on the plane.
Define f : X → Y by

f(x) =

x, 0 ≤ x < 2π

0, x = 2π

Define g : Y → Z by g(y) = (cos y, sin y) for all y ∈ [0, 2π) and h : X → Z by

h(x) =

(cos x, sin x), 0 ≤ x < 2π

(1, 0), x = 2π

Here,
h(x) = g(f(x)) ∀ x ∈ X

Also,

|h(x) − h(y)| =
√

(cos x − cos y)2 + (sin x − sin y)2

=
√

(1 − 2 cos x cos y) + (1 − 2 sin x sin y)

=
√

2(1 − cos(x − y))

=
√

2 · 2 sin2
(

x − y

2

)
= 2

∣∣∣∣sin (
x − y

2

)∣∣∣∣ ≤ 2 · |x − y|
2 = |x − y|

and since h is continuous at 2π, we have h is uniformly continuous. But f is not continous,
even when X and Z are compact. □
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