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Problem 1:

Complete the details of the following alternative proof of Theorem 4.19. If f is not
uniformly continuous, then for some € > 0 there are sequences {p,}, {¢,} in X such that
dx (Pns qn) — 0 but dy (f(pn), f(gn)) — €. Use Theorem 2.37 to obtain a contradiction.

Solution 1:

Theorem 4.19. Let f be a continuous mapping of a compact metric space X into a
metric space Y. Then f is uniformly continuous on X.

Proof. 1If f is not uniformly continuous, then for some ¢ > 0 there are sequences {p,},
{g.} in X such that dx(pn,¢,) — 0 but dx(ps,q,) > €.

Since X is compact, then {p,} being an infinite subset of X, has a limit point (say
p) in X (using Theorem 2.37). Similarly, {g,} has a limit point (say ¢) in X. So, there
are subsequences {p,,} of {p,} and {q,,} of {¢.}, converging to p and ¢ respectively. We
have, by triangle inequality, as n; — oo,

dx(p,q) < dx(p,pn,) + dx(Pn;, @n;) + dx(gn;,q) = 0

Therefore, dx(p,q) =
converge to f(p) = f(q

dy (f(Pn.), fqn.)) < dy (f(pn,), F(P)) + dy (f(p), f(gn.)) = 0
which contradicts dy (f(pn,), f(qn,)) > €. O

0, i.e., p = q. Now since f is continuous, so f(p,,) and f(gn,)
). So we have, by triangle inequality, as n; — oo,

Problem 2:

If F is a nonempty subset of a metric space X, define the distance from x € X to E by

pe(x) = inf d(z, 2).

z€E
(a) Prove that pg(z) = 0 if and only if x € E.

(b) Prove that pg is a uniformly continuous function on X, by showing that

lpe(x) — pe(y)| < d(7,Y)

forallz € X, y € X.

Solution 2:

Proof of (a). First we shall prove that pg(z) =0 = x € E. Assume, to the contrary,
that pp(r) =0and z € E. Then x € E and since E is closed, so B is open. Therefore,
37 > 0 such that

dly,z) <r = yeE ie,yeE

Thus, for every z € F, d(z,x) > r and hence

pe(x) = Zuelgd(z,x) >r >0



which is a contradiction to pg(z) = 0.
Now we shall prove that z € E = pg(x) = 0. Suppose z € E. If x € E, then

pe(r) =d(z,x) =0

If x ¢ E, then x is a limit point of E. Then given any ¢ > 0, 3 z € E such that
d(z,z) < e. Since every € > 0 is not a lower bound of d(z, z), so

pe(x) = inf d(z,2) =0

zeE
O
Proof of (b). We have,
for any z € E. Then,
pi(x) = inf d(z,2) < inf (d(z,y) +d(y, 7)) = d(x,y) + pi(y).

o)

pE(T) — pp(y) < d(z,Y). (1)
By interchanging x and y, we also get

pe(y) — pe(r) < d(r,y). (2)

S'ince lpe(x) — pe(y)| is either pp(z) — pe(y) or pe(y) — pr(x), so equations (1) and (2)
give
pe() = pe(y)] < d(z,y)

Now, for every € > 0, take 0 = . Then

d(z,y) <d = d(z,y) <e,

SO
pE(2) — pE(Y)| <d(z,y) <e V 2,y € X

Thus, pg is uniformly continuous on X. O

Problem 3:

Suppose K and F' are disjoint sets in a metric space X, K is compact, F' is closed. Prove
that there exists 0 > 0 such that d(p,q) > dif p € K,q € F.
Show that the conclusion may fail for two disjoint closed sets if neither is compact.

Solution 3:

We shall first prove that pg is a continuous positive function on K. By Problem 2(b), we
have pp is continuous on K. We have to show that pr(p) # 0 for every p € K. Assume,
to the contrary, that pr(q) = 0 for some ¢ € K. Then by Problem 2(a), we have ¢ € F.
Since F is closed, so F' = F and hence ¢ € F, a contradiction since K and F' are disjoint



sets. Therefore, pp is a continuous positive function on K. Also since K is compact, pg
attains its minimum value on K, i.e., 3 r € K such that

pr(r) =min pp(p)
Let 0 < § < pr(q), then for any p € K,q € F, we have

d(p,q) > pr(p) = pr(r) > 6

The conclusion may fail for two disjoint closed sets if neither is compact. Consider
K:NandF:{n+%|n€N,n>1}. Then for p, € K and ¢, € F, we have

. !
lim d(pn, ¢) = lim — =0

n—oo n,

i.e., § 6 >0 such that d(p,q) >dif p€ K,q € F. O

Problem 4:

Let A and B be disjoint nonempty closed sets in a metric space X, and define

pa(p)
fp)=——F——"—7= (peX)
pa(p) + ps(p)
Show that f is a continuous function on X whose range lies in [0, 1], that f(p) = 0
precisely on A and f(p) = 1 precisely on B. This establishes a converse of Exercise 3:
Every closed set A C X is Z(f) for some continuous real f on X. Setting

e () - ()

show that V' and W are open and disjoint, and that A C V,B C W. (Thus pairs of
disjoint closed sets in a metric space can be covered by pairs of disjoint open sets. This
property of metric spaces is called normality.)

Solution 4:

We shall first prove that pa(p) + pp(p) # 0 for every p € X. Since A and B are closed,
so A= A and B = B. From Problem 2(a), we have pa(p) = 0 if and only if pe A = A
and pp(p) = 0 if and only if p € B = B. But since A and B are disjoint, it follows that
pa(p) + pu(p) # 0. By Problem 2(b), we have pa(p) is continuous and pa(p) + ps(p),
being a sum of two continuous functions and f(p), being a quotient of two continuous
functions are continuous (using Theorem 4.9), i.e., f is a continuous function on X, with
range in [0, 1].

Using Problem 2(a), since A is closed, we have A = A and hence p4(p) = 0 for p € A.
Since, pa(p) + pp(p) # 0 for every p € X, we have f(p) = 0 on A. Similarly, pg(p) =0

for p € B. Since pa(p) # 0 when pg(p) # 0 for p € X, therefore f(p) = xg; =1

Since {0, %) is an open set in [0, 1], and since f is continuous, so V = f~! ({0, %)) is

open. Similarly, f is continuous and (%, 1} is open in [0, 1], so W is open. Now we shall
prove that V and W are disjoint. Suppose they are not, then there is a x € X such that
x €V and x € W. But then, this gives f(x) € [0, %) and f(z) € (%, 1}, a contradiction.
Therefore, V and W are disjoint. Also, we have proved that p € A = f(p) =0, i.e.,
p= f~10) € V. Therefore, A C V. Similarly, B C W because p € B = f(p)=1. O

4



Problem 5:

Suppose X,Y, Z are metric spaces, and Y is compact. Let f map X into Y, let g be a
continuous one-to-one mapping of Y into Z, and put h(x) = g(f(z)) for z € X.

Prove that f is uniformly continuous if A is uniformly continuous.

Prove also that f is continuous if h is continuous.

Show (by modifying Example 4.21, or by finding a different example) that the com-
pactness of Y cannot be omitted from the hypotheses, even when X and Z are compact.

Solution 5:

Since g : Y — Z is continuous and Y is compact, so by Theorem 4.14, g(Y’) is compact.
Also, since ¢ is a continuous one-one mapping of a compact metric space Y onto Z, so
by Theorem 4.17, g7 : g(Y) — Y is continuous, and hence by Theorem 4.19, g~' is
uniformly continuous. Now, since f(z) = g '(h(z)), so f is uniformly continuous if A is
uniformly continuous.

We established that ¢! : g(Y) — Y is continuous by Theorem 4.17. Since f(x) =
g 1 (h(z)), so by Theorem 4.7, f is continuous if & is continuous.

As in Example 4.21, let X = [0,27], Y = [0,27) and Z be the unit circle on the plane.

Define f: X — Y by
r, 0<x <21
€Tr) =
/(@) {O, r =27
Define g : Y — Z by g(y) = (cosy,siny) for all y € [0,27) and h : X — Z by

i <
W) (cosz,sinz), 0<x<2m
(1,0), z=2m
Here,
M) =g(fx)) VeeX
Also,

() = h(y)]

cosx — cosy)? + (sinz — siny)?

(
(

1 —2coszcosy) + (1 — 2sinxsiny)

2(1 — cos(z —y))
2. 2sin’ (T)

Sjﬂ(w—y>’§2_|x—y| = |z —y|
2 2

Il
—_— = = =

I
N\

and since h is continuous at 27, we have h is uniformly continuous. But f is not continous,
even when X and Z are compact. O



