Analysis II HW 1

Nirjhar Nath nirjhar@cmi.aci.in

Solution 1:

Proof of (b) \Longrightarrow (a)

Suppose the norms $|| \cdot ||$ and $|| \cdot ||'$ induce the same topology. We denote by $B_r(x)$ and $B'_r(x)$ the open balls of radius r centered at $x \in V$ with respect to the norms $|| \cdot ||$ and $|| \cdot ||'$ respectively. Since $B_1(0)$ is open with respect to $|| \cdot ||$, so it is also open with respect to $|| \cdot ||'$. Therefore, since $0 \in B_1(0)$, so there exists a > 0 such that $B'_a(0) \subseteq B_1(0)$.

Now choose any $v \in V$ and $\varepsilon > 0$. Then

$$\frac{(a-\varepsilon)}{||v||'}v \in B'_a(0) \subseteq B_1(0)$$

and so,

$$\left\|\frac{(a-\varepsilon)}{||v||'}v\right\| < 1$$

i.e.,

$$(a-\varepsilon)||v|| < ||v||'$$

Since this is true for every $\varepsilon > 0$, so $a||v|| \le ||v||'$. A symmetric argument interchanging the role of both the norms shows that there exists b > 0 such that $||v||' \le b||v||$ for every $v \in V$. Therefore, for every $v \in V$, there exist a, b > 0 such that

$$a||v|| \le ||v||' \le b||v||$$

i.e., the norms $|| \cdot ||$ and $|| \cdot ||'$ are equivalent. Proof of (c) \Longrightarrow (a)

Suppose (c) holds, i.e., a sequence x_n in V converges under $|| \cdot || \iff$ it converges under $|| \cdot ||'$ and in that case the limit under each norm is the same. Let $\alpha := \inf\{||x_n||' \mid n \in \mathbb{N}\}$ and $\beta := \sup\{||x_n||' \mid n \in \mathbb{N}\}$. Then α and β are finite since x_n converges under $|| \cdot ||'$. For each n, we have

$$a||x_n|| \le ||x_n||' \le b||x_n||$$

where $a = \frac{\alpha}{||x_n||}$ and $b = \frac{||x_n||'}{||x_n||} \le \frac{\beta}{||x_n||}$. As $n \to \infty$, a, b > 0 and independent of $\{x_n\}$.

Solution 2:

(i) Suppose T is open in S. Then for any $t \in T, \exists r_t > 0$ such that

$$d(t, a) < r_t \text{ and } a \in S \implies a \in T$$

Define

$$V := \bigcup_{x \in X} B_{r_x}(x)$$

where $B_{r_x}(x)$ are open balls (centered at x with radius r_x) in X. We shall prove that $T = S \cap V$, as follows. We have,

$$t \in T \implies t \in S \text{ and } t \in B_{r_x}(x) \subseteq V \implies t \in S \cap V$$

Also,

$$t \in S \cap V \implies t \in S \cap B_{r_x}(x)$$
 for some $B_{r_x}(x) \implies d(t,x) < r_x \implies t \in T$ (as $t \in S$)

Therefore, $T = S \cap V$.

Now we prove the other direction. Let V be an open set in X such that $T = S \cap V$. Then $t \in T \implies t \in V$. So, there exists $\varepsilon > 0$ such that the open ball $B_{\varepsilon}(t) \subset V$. So, $B_{\varepsilon}(t) \cap S \subset T$. Therefore, T is open in S.

Now we prove the next part of the problem. If T is open in S, then there exists a set V in X such that $T = S \cap V$. Since S is open in X, there exists a set U in X such that $S = X \cap U$. So we have $T = X \cap (U \cap V)$, which means that T is open in X.

Now we prove the other direction. If T is open in X, then there exists a set V in X such that $T = X \cap V$. Since S is open in X, there exists a set U in X such that $S = X \cap U$. So we have $T = S \cap (U \cap V)$, which means that T is open in S.

(ii) The analogous statement for closed sets is "A subset T of S is closed in the metric space S if and only if there exists a set F closed in X such that $T = S \cap F$. If S is closed in X, then T is closed in $S \iff T$ is closed in X."

Proof. If T is closed in S, then its complement in $S, S \setminus T$, is open in S. By definition of closed sets, there exists a set V in X such that $S \setminus T = S \cap V$. Since S is closed in X, there exists a set U in X such that $S = X \setminus U$. So we have $S \setminus T = X \setminus (U \cap V)$, which means that $T = X \setminus (U \cap V)^C$. Since the complement of an open set is closed, $(U \cap V)^C$ is closed in X, and so T is closed in X.

Now we prove the other direction. If T is closed in X, then its complement in X, $X \setminus T$, is open in X. By definition of closed sets, there exists a set V in X such that $X \setminus T = X \cap V$. Since S is closed in X, there exists a set U in X such that $S = X \setminus U$. So we have $X \setminus T = S \cap (U \cap V)$, which means that $T = S \setminus (U \cap V)^C$. Since the complement of an open set is closed, $(U \cap V)^C$ is closed in S, and so T is closed in S.

Solution 3:

(i) Proof of (a) \implies (b)

For every $n \in \mathbb{N}$, consider the open balls $B_{\frac{1}{n}}(x)$ of radius $\frac{1}{n}$ centered at $x \in X$. Assuming (a) is true, we have at least one point in $B_{\frac{1}{n}}(x) \cap S$ for every $n \in \mathbb{N}$. Consider one point x_n from every $B_{\frac{1}{n}}(x) \cap S$.

Claim. The sequence $\{x_n\}$ converges to x.

Proof. Consider any $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $N > \frac{1}{\varepsilon}$. Then for any $n \ge N$, we have

$$d(x_n, x) < \frac{1}{n} \le \frac{1}{N} < \varepsilon$$

i.e., x_n converges to x.

 $\underline{\text{Proof of (b)} \Longrightarrow (a)}$

Assume, to the contrary, that (b) is true but (a) is not. Then there exists $\delta > 0$ such that

$$B_{\delta}(x) \cap S = \phi$$

Thus, for any $a \in S, a \notin B_{\delta}(x)$ (i.e., $d(a, x) \geq \delta$) and any sequence $\{x_n\}$ in S, $\{x_n\}$ does not converge to x, because $d(x_n, x) \geq \delta \forall n \in \mathbb{N}$. So, no sequence in S converges to x, a contradiction.

(ii) Define

$$B_r(x) \setminus \{x\} := \{t \mid d(x,t) < r, t \neq x\}$$

and call it the deleted ball of radius r centered at x. The analogues of (a) and (b) in (i) are:

- (a) The intersection of S with every deleted ball centered at x contains at least one point.
- (b) There is a sequence $\{x_n\}$ in S converging to x with $x_n \neq x \forall n \in \mathbb{N}$.

 $\frac{\text{Proof of (a)} \Longrightarrow (b)}{\text{We consider } B_{\frac{1}{n}}(x) \setminus \{x\} \text{ instead of } B_{\frac{1}{n}}(x) \text{ and the remaining is same as that of (i).}}$ $\frac{\text{Proof of (b)} \Longrightarrow (a)}{\text{We consider } B_{\delta}(x) \setminus \{x\} \text{ instead of } B_{\delta}(x) \text{ and the remaining is same as that of (i).}}$

(iii) Let

$$B'_r(c) = \{x \mid d(c, x) \le r\}$$

To show that $B'_r(c)$ is closed, we need to show that its complement

$$X \setminus B'_r(c) = \{x \mid d(c, x) > r\}$$

is open. Let $y \in X \setminus B'_r(c)$. Then d(c, y) > r. Choose $\varepsilon > 0$ such that

$$0 < \varepsilon < d(c, x) - r$$

Then for any $z \in B_{\varepsilon}(y)$, by triangle inequality, we have

$$d(c, z) \ge d(c, y) - d(z, y) > d(c, y) - \varepsilon > r$$

Therefore, $z \in X \setminus B'_r(c)$. Thus, for every $y \in X \setminus B'_r(c)$, there is an open ball centered at y contained in $X \setminus B'_r(c)$, i.e., $X \setminus B'_r(c)$ is open, i.e., $B'_r(c)$ is closed.

Consider the metric space $X = \{a, b, c\}$ with the following metric:

$$d(a,b) = d(b,c) = 1, d(a,c) = 2$$

Let r = 1 and let c = a. Here, the set $\{x \mid d(c, x) \leq r\}$ is not the closure of the open ball $B_r(a)$, since it includes the point b which is not in the open ball. So, in a general metric space, the set $\{x \mid d(c, x) \leq r\}$ need not be the closure of the open ball $\{x \mid d(c, x) < r\}$.

In the Euclidean space \mathbb{R}^n , the closure of the set $B_r(c) = \{x \mid d(c,x) < r\}$ is the set $B'_r(c) = \{x \mid d(c,x) \leq r\}$. We denote by \overline{A} the closure of set A. We want to show that $\overline{B_r(c)} = B'_r(c)$. By the first part of this problem, we have $B'_r(c)$ is the closed set containing $B_r(c)$ and $\overline{B_r(c)}$ is the intersection of all closed sets containing $B_r(c)$. So,

$$B_r(c) \subseteq B'_r(c) \tag{1}$$

Let $x \in B'_r(c)$. If $x \in B_r(c)$, then clearly $x \in \overline{B_r(c)}$. If $x \in B'_r(c) \setminus B_r(c)$, then we claim that x is a limit point of $B_r(c)$. We prove this as follows.

Consider the sequence $\{x_n\}$ defined by

$$x_n = \frac{1}{n}c + \left(1 - \frac{1}{n}\right)x$$

Then,

$$d(x_n, c) = ||c - x_n|| = \left| \left| \left(1 - \frac{1}{n}\right)c - \left(1 - \frac{1}{n}\right)x \right| \right| = \left(1 - \frac{1}{n}\right)||c - x|| = \left(1 - \frac{1}{n}\right)r < r$$

and hence $x_n \in B_r(c)$. Also,

$$d(x_n, x) = ||x - x_n|| = \left| \left| \frac{1}{n}x - \frac{1}{n}c \right| \right| = \frac{1}{n}||x - c|| = \frac{1}{n}r > 0$$

and hence $d(x_n, x) \to 0$ as $n \to \infty$, i.e., $x_n \to x$ as $n \to \infty$ with $x_n \neq x \forall n \in \mathbb{N}$. So, x is a limit point of $B_r(c)$ and hence $x \in \overline{B_r(c)}$. Therefore,

$$B_r'(c) \subseteq \overline{B_r(c)} \tag{2}$$

So, combining equations (1) and (2), we have $\overline{B_r(c)} = B'_r(c)$.

Solution 4:

(i) Proof of (a) \implies (b)

Suppose $f: X \to Y$ satisfies condition (a). We need to show that $f(x_n)$ converges to f(a). Take any $\varepsilon > 0$. Then for any $a \in X$, there exists $\delta > 0$ such that $d_X(x,a) < \delta \implies d_Y(f(x), f(a)) < \varepsilon$. If $x_n \to a$, then there exists $N \in \mathbb{N}$ such that $d(x_n, a) < \delta \forall n \ge N$. Then $d_Y(f(x), f(a)) < \varepsilon$, i.e., f(x) converges to f(a)as x converges to a. Proof of (b) \Longrightarrow (a)

Suppose $f: X \to Y$ is such that (b) holds but (a) does not hold, i.e., there exists an $\varepsilon > 0$ such that for all $\delta > 0$, there exists an x with $d_X(x, a) < \delta$ for which $d_Y(f(x), f(a)) \ge \varepsilon$. Then for each $n \in \mathbb{N}$, we can set $\delta = \frac{1}{n}$, which gives an x_n with $d_X(x_n, a) < \frac{1}{n}$ so that $d_Y(f(x_n), f(a)) \ge \varepsilon$. So, x_n converges to a. But since $d_Y(f(x), f(a)) \ge \varepsilon$, so $f(x_n)$ does not converge to f(a), a contradiction to (b). Therefore, (b) \Longrightarrow (a).

(ii) Proof of (d) \Longrightarrow (c')

Consider any closed set C in Y. We want to prove that $f^{-1}(C)$ is closed in X. If (d) is true, then

$$f(\overline{f^{-1}(C)}) \subseteq \overline{f(f^{-1}(C))} \tag{3}$$

We also have $f(f^{-1}(S)) \subseteq S$ for any subset $S \subseteq Y$. This is true because if $x \in f(f^{-1}(S))$, then there exists $y \in f^{-1}(S)$ such that f(y) = x and since $y \in f^{-1}(S)$, so $f(y) \in S$, which gives $x \in S$. Using this result in equation (3), we have

$$f(\overline{f^{-1}(C)}) \subseteq \overline{C} = C$$

because C is closed in Y. We also have $T \subseteq f^{-1}(f(T))$ for any subset $T \subseteq X$. This is true because if $x \in T$ and $x \notin f^{-1}(f(T))$, it gives $f(x) \notin f(T)$, a contradiction since $x \in T$. Therefore, using this result, we have

$$\overline{f^{-1}(C)} \subseteq f^{-1}(f(f^{-1}(C))) \subseteq f^{-1}(C)$$

Also since $f^{-1}(C) \subseteq \overline{f^{-1}(C)}$, so $f^{-1}(C) = \overline{f^{-1}(C)}$, i.e., $f^{-1}(C)$ is closed. <u>Proof of (c') \Longrightarrow (d)</u>

Consider any subset $S \subseteq X$. We need to prove that $f(\overline{S}) \subseteq \overline{f(S)}$ assuming (c') is true. Since $\overline{f(S)}$ is closed in Y, therefore by (c'), $f^{-1}(\overline{f(S)})$ is closed in X. Using a result of the previous proof, we get

$$S \subseteq f^{-1}(f(S)) \subseteq f^{-1}(\overline{f(S)}) \tag{4}$$

Since $f^{-1}(\overline{f(S)})$ is closed in X, so $f^{-1}(\overline{f(S)}) = \overline{f^{-1}(\overline{f(S)})}$. Therefore, equation (4) becomes

$$S \subseteq f^{-1}(\overline{f(S)}) \implies f(S) \subseteq \overline{f(S)}$$

Again, using a result of the previous proof, we have

$$f(\overline{S}) \subseteq f(f^{-1}(\overline{f(S)})) \subseteq \overline{f(S)}$$

Proof that (c) and (c') are equivalent

We observe that $f^{-1}(S^C) = (f^{-1}(S))^C$ for any subset $S \subseteq Y$. This is because

$$x \in f^{-1}(S^C) \Longleftrightarrow f(x) \in S^C \Longleftrightarrow f(x) \notin S \Longleftrightarrow x \notin f^{-1}(S) \Longleftrightarrow x \in (f^{-1}(S))^C$$

If A is closed in Y, then A^C is open in Y, then $f^{-1}(A^C)$ is open in X and therefore by the previous observation, $(f^{-1}(A))^C$ is open in X. Therefore, $f^{-1}(A)$ is closed in X and hence (c) \Longrightarrow (c'). Similarly, (c') \Longrightarrow (c), and we are done.

(iii) (d') For any subset T of Y, $f^{-1}(T^{\circ}) \subseteq (f^{-1}(T))^{\circ}$, where A° denotes the interior of A.

Proof of $(d) \Longrightarrow (d')$

Suppose (d) holds, i.e., for any subset $S \subseteq X$, $f(\overline{S}) \subseteq \overline{f(S)}$. Let T be a subset of Y, and let U be an open set containing $f^{-1}(T^{\circ})$. Then f(U) is an open set containing T° , which means

$$f(U) \subseteq T \implies f^{-1}(f(U)) \subseteq f^{-1}(T) \implies U \subseteq f^{-1}(T)$$

which means that $f^{-1}(T^{\circ}) \subseteq (f^{-1}(T))^{\circ}$. <u>Proof of (d') \Longrightarrow (d)</u>

Suppose (d') holds, i.e., for any subset $T \subseteq Y$, $f^{-1}(T^{\circ}) = (f^{-1}(T))^{\circ}$. Let S be a subset of X, and let U be an open set containing \overline{S} . Then f(U) is an open set containing $f(\overline{S})$, which means

$$f(U) \subseteq \overline{f(S)} \implies f^{-1}f(U) \subseteq f^{-1}(\overline{f(S)}) \implies U \subseteq f^{-1}(\overline{f(S)}) \implies \overline{S} \subseteq f^{-1}(\overline{f(S)})$$

which gives $f(\overline{S}) \subseteq \overline{f(S)}$.

Solution 5:

(i) We consider the max metric in $X_1 \times X_2$ given by

$$d((x_1, y_1), (x_2, y_2)) = \max(d((x_1, x_2), (y_1, y_2)))$$

To show that open sets in $(X_1 \times X_2, \text{ max metric})$ are precisely unions of sets of the form (open ball of $X_1 \times \text{open ball of } X_2$), we need to prove two things:

- (a) Every open set in $X_1 \times X_2$ can be expressed as a union of sets of the form (open ball of $X_1 \times$ open ball of X_2).
- (b) Every union of sets of the form (open ball of $X_1 \times$ open ball of X_2) is an open set in $X_1 \times X_2$.

$\underline{\text{Proof of 1.}}$

Let $B_r^{X_1 \times X_2}((x_0, y_0))$ be an open ball in $X_1 \times X_2$, of radius r centered at (x_0, y_0) . We have,

$$B_r^{X_1 \times X_2}((x_0, y_0)) = \{(x, y) \mid \max(d_{X_1}(x, x_0), d_{X_2}(y, y_0))\}$$

= $\{(x, y) \mid d_{X_1}(x, x_0) < r, d_{X_2}(y, y_0) < r\}$
= $B_r^{X_1}(x_0) \times B_r^{X_2}(y_0)$

Therefore, every open set in $X_1 \times X_2$ can be expressed as a union of sets of the form (open ball of $X_1 \times$ open ball of X_2).

 $\underline{\text{Proof of } 2.}$

Consider a set of the form

$$B_r^{X_1}(x_0) \times B_s^{X_2}(y_0) = \{(x, y) \mid d_{X_1}(x, x_0) < r, d_{X_2}(y, y_0) < s\}$$

We want to prove that this set is open in $X_1 \times X_2$. Choose t such that

$$0 < t < \min(r - d_{X_1}(x, x_0), s - d_{X_2}(y, y_0))$$

Then

$$B_t^{X_1 \times X_2}((x, y)) = \{ (x', y') \mid d_{X_1}(x, x') < t, d_{X_2}(y, y') < t \}$$

and by triangle inequality, for $(a, b) \in B_t^{X_1 \times X_2}((x, y))$, we have

$$d_{X_1}(x_0, a) \le d_{X_1}(x_0, x) + d_{X_1}(x, a) < d_{X_1}(x_0, x) + t < r$$

and,

$$d_{Y_1}(y_0, b) \le d_{X_2}(y_0, y) + d_{X_2}(y, b) < d_{X_2}(y_0, y) + t < s$$

and hence,

$$(a,b) \in B_r^{X_1}(x_0) \times B_s^{X_2}(y_0)$$

It follows that

$$B_t^{X_1 \times X_2}((x, y)) \subseteq B_r^{X_1}(x_0) \times B_s^{X_2}(y_0)$$

i.e., the open ball $B_t^{X_1 \times X_2}((x, y))$ is contained in $B_r^{X_1}(x_0) \times B_s^{X_2}(y_0)$. Therefore, every union of sets of the form (open ball of $X_1 \times$ open ball of X_2) is an open set in $X_1 \times X_2$.

Yes, we can replace "open ball" with "arbitrary open set" of the respective X_i spaces. This is because the definition of an open set in a metric space is a set that contains an open ball around every point in the set. Hence, every open set in a metric space can be expressed as a union of open balls.

The two projection maps $\pi_1 : X_1 \times X_2 \to X_1$ and $\pi_2 : X_1 \times X_2 \to X_2$ are continuous. A map $f : X \to Y$ between two metric spaces (X, d_X) and (Y, d_Y) is continuous if for every open set U in Y, the preimage $f^{-1}(U)$ is an open set in X. In this case, for each open set U in X_1 (or X_2), the preimage $\pi_1^{-1}(U) = U \times X_2$ (or $\pi_2^{-1}(U) = X_1 \times U$) is an open set in $X_1 \times X_2$, because it is a product of open sets. Hence, both π_1 and π_2 are continuous maps. (ii) Let (X, d) be a metric space and p be a fixed point in X. First, observe that the function $x \to d(p, x)$ is continuous, since for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$d(p,x) < \delta \implies |d(p,x) - d(p,y)| < \epsilon$$

Let $(x, y) \in X \times X$ and $\epsilon > 0$. Let $\delta_1 > 0$ and $\delta_2 > 0$ be such that

$$d(p,x) < \delta_1 \implies |d(p,x) - d(p,z)| < \frac{\epsilon}{2} \text{ and } d(p,y) < \delta_2 \implies |d(p,y) - d(p,z)| < \frac{\epsilon}{2}$$

Define $\delta = \min(\delta_1, \delta_2)$. Let $(u, v) \in X \times X$ be such that $d(x, u) < \delta$ and $d(y, v) < \delta$. Then we have $d(p, u) < \delta_1$ and $d(p, v) < \delta_2$, so

$$\begin{aligned} |d(x,y) - d(u,v)| &= |d(p,x) - d(p,u) + d(p,y) - d(p,v)| \\ &\leq |d(p,x) - d(p,u)| + |d(p,y) - d(p,v)| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{aligned}$$

Hence, $(x, y) \to d(x, y)$ is continuous at (x, y). Since this holds for every $(x, y) \in X \times X$, it follows that the function $(x, y) \to d(x, y)$ is continuous on $X \times X$.