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Solution 1:
Proof of (b) =⇒ (a)
Suppose the norms || · || and || · ||′ induce the same topology. We denote by Br(x) and
B′

r(x) the open balls of radius r centered at x ∈ V with respect to the norms || · || and
|| · ||′ respectively. Since B1(0) is open with respect to || · ||, so it is also open with respect
to || · ||′. Therefore, since 0 ∈ B1(0), so there exists a > 0 such that B′

a(0) ⊆ B1(0).
Now choose any v ∈ V and ε > 0. Then

(a − ε)
||v||′

v ∈ B′
a(0) ⊆ B1(0)

and so, ∣∣∣∣∣
∣∣∣∣∣(a − ε)

||v||′
v

∣∣∣∣∣
∣∣∣∣∣ < 1

i.e.,
(a − ε)||v|| < ||v||′

Since this is true for every ε > 0, so a||v|| ≤ ||v||′. A symmetric argument interchanging
the role of both the norms shows that there exists b > 0 such that ||v||′ ≤ b||v|| for every
v ∈ V . Therefore, for every v ∈ V , there exist a, b > 0 such that

a||v|| ≤ ||v||′ ≤ b||v||

i.e., the norms || · || and || · ||′ are equivalent.
Proof of (c) =⇒ (a)
Suppose (c) holds, i.e., a sequence xn in V converges under || · || ⇐⇒ it converges under
|| · ||′ and in that case the limit under each norm is the same. Let α := inf{||xn||′ | n ∈ N}
and β := sup{||xn||′ | n ∈ N}. Then α and β are finite since xn converges under || · ||′.
For each n, we have

a||xn|| ≤ ||xn||′ ≤ b||xn||

where a = α

||xn||
and b = ||xn||′

||xn||
≤ β

||xn||
. As n → ∞, a, b > 0 and independent of {xn}.

Solution 2:
(i) Suppose T is open in S. Then for any t ∈ T , ∃ rt > 0 such that

d(t, a) < rt and a ∈ S =⇒ a ∈ T

Define
V :=

⋃
x∈X

Brx(x)

where Brx(x) are open balls (centered at x with radius rx) in X. We shall prove
that T = S ∩ V , as follows. We have,

t ∈ T =⇒ t ∈ S and t ∈ Brx(x) ⊆ V =⇒ t ∈ S ∩ V

Also,

t ∈ S∩V =⇒ t ∈ S∩Brx(x) for some Brx(x) =⇒ d(t, x) < rx =⇒ t ∈ T (as t ∈ S)
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Therefore, T = S ∩ V .
Now we prove the other direction. Let V be an open set in X such that T = S ∩ V .
Then t ∈ T =⇒ t ∈ V . So, there exists ε > 0 such that the open ball Bε(t) ⊂ V .
So, Bε(t) ∩ S ⊂ T . Therefore, T is open in S.
Now we prove the next part of the problem. If T is open in S, then there exists a
set V in X such that T = S ∩ V . Since S is open in X, there exists a set U in X
such that S = X ∩ U . So we have T = X ∩ (U ∩ V ), which means that T is open
in X.
Now we prove the other direction. If T is open in X, then there exists a set V in
X such that T = X ∩ V . Since S is open in X, there exists a set U in X such that
S = X ∩ U . So we have T = S ∩ (U ∩ V ), which means that T is open in S.

(ii) The analogous statement for closed sets is “A subset T of S is closed in the metric
space S if and only if there exists a set F closed in X such that T = S ∩ F . If S is
closed in X, then T is closed in S ⇐⇒ T is closed in X.”
Proof. If T is closed in S, then its complement in S, S \ T , is open in S. By
definition of closed sets, there exists a set V in X such that S \ T = S ∩ V . Since
S is closed in X, there exists a set U in X such that S = X \ U . So we have
S \ T = X \ (U ∩ V ), which means that T = X \ (U ∩ V )C . Since the complement
of an open set is closed, (U ∩ V )C is closed in X, and so T is closed in X.
Now we prove the other direction. If T is closed in X, then its complement in X,
X \ T , is open in X. By definition of closed sets, there exists a set V in X such
that X \ T = X ∩ V . Since S is closed in X, there exists a set U in X such that
S = X \ U . So we have X \ T = S ∩ (U ∩ V ), which means that T = S \ (U ∩ V )C .
Since the complement of an open set is closed, (U ∩ V )C is closed in S, and so T is
closed in S.

Solution 3:
(i) Proof of (a) =⇒ (b)

For every n ∈ N, consider the open balls B 1
n
(x) of radius 1

n
centered at x ∈ X.

Assuming (a) is true, we have at least one point in B 1
n
(x) ∩ S for every n ∈ N.

Consider one point xn from every B 1
n
(x) ∩ S.

Claim. The sequence {xn} converges to x.
Proof. Consider any ε > 0. Choose N ∈ N such that N > 1

ε
. Then for any n ≥ N ,

we have
d(xn, x) <

1
n

≤ 1
N

< ε

i.e., xn converges to x.
Proof of (b) =⇒ (a)
Assume, to the contrary, that (b) is true but (a) is not. Then there exists δ > 0
such that

Bδ(x) ∩ S = ϕ

Thus, for any a ∈ S, a ̸∈ Bδ(x) (i.e., d(a, x) ≥ δ) and any sequence {xn} in S,
{xn} does not converge to x, because d(xn, x) ≥ δ ∀ n ∈ N. So, no sequence in S
converges to x, a contradiction.
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(ii) Define
Br(x) \ {x} := {t | d(x, t) < r, t ̸= x}

and call it the deleted ball of radius r centered at x. The analogues of (a) and (b)
in (i) are:

(a) The intersection of S with every deleted ball centered at x contains at least
one point.

(b) There is a sequence {xn} in S converging to x with xn ̸= x ∀ n ∈ N.

Proof of (a) =⇒ (b)
We consider B 1

n
(x) \ {x} instead of B 1

n
(x) and the remaining is same as that of (i).

Proof of (b) =⇒ (a)
We consider Bδ(x) \ {x} instead of Bδ(x) and the remaining is same as that of (i).

(iii) Let
B′

r(c) = {x | d(c, x) ≤ r}

To show that B′
r(c) is closed, we need to show that its complement

X \ B′
r(c) = {x | d(c, x) > r}

is open. Let y ∈ X \ B′
r(c). Then d(c, y) > r. Choose ε > 0 such that

0 < ε < d(c, x) − r

Then for any z ∈ Bε(y), by triangle inequality, we have

d(c, z) ≥ d(c, y) − d(z, y) > d(c, y) − ε > r

Therefore, z ∈ X \ B′
r(c). Thus, for every y ∈ X \ B′

r(c), there is an open ball
centered at y contained in X \ B′

r(c), i.e., X \ B′
r(c) is open, i.e., B′

r(c) is closed.

Consider the metric space X = {a, b, c} with the following metric:

d(a, b) = d(b, c) = 1, d(a, c) = 2

Let r = 1 and let c = a. Here, the set {x | d(c, x) ≤ r} is not the closure of the
open ball Br(a), since it includes the point b which is not in the open ball. So, in a
general metric space, the set {x | d(c, x) ≤ r} need not be the closure of the open
ball {x | d(c, x) < r}.

In the Euclidean space Rn, the closure of the set Br(c) = {x | d(c, x) < r} is
the set B′

r(c) = {x | d(c, x) ≤ r}. We denote by A the closure of set A. We want
to show that Br(c) = B′

r(c). By the first part of this problem, we have B′
r(c) is the

closed set containing Br(c) and Br(c) is the intersection of all closed sets containing
Br(c). So,

Br(c) ⊆ B′
r(c) (1)

Let x ∈ B′
r(c). If x ∈ Br(c), then clearly x ∈ Br(c). If x ∈ B′

r(c) \ Br(c), then we
claim that x is a limit point of Br(c). We prove this as follows.
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Consider the sequence {xn} defined by

xn = 1
n

c +
(

1 − 1
n

)
x

Then,

d(xn, c) = ||c−xn|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
(

1 − 1
n

)
c−

(
1 − 1

n

)
x

∣∣∣∣∣∣
∣∣∣∣∣∣ =

(
1 − 1

n

)
||c−x|| =

(
1 − 1

n

)
r < r

and hence xn ∈ Br(c). Also,

d(xn, x) = ||x − xn|| =

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
n

x − 1
n

c

∣∣∣∣∣∣
∣∣∣∣∣∣ = 1

n
||x − c|| = 1

n
r > 0

and hence d(xn, x) → 0 as n → ∞, i.e., xn → x as n → ∞ with xn ̸= x ∀ n ∈ N.
So, x is a limit point of Br(c) and hence x ∈ Br(c). Therefore,

B′
r(c) ⊆ Br(c) (2)

So, combining equations (1) and (2), we have Br(c) = B′
r(c).

Solution 4:
(i) Proof of (a) =⇒ (b)

Suppose f : X → Y satisfies condition (a). We need to show that f(xn) converges
to f(a). Take any ε > 0. Then for any a ∈ X, there exists δ > 0 such that
dX(x, a) < δ =⇒ dY (f(x), f(a)) < ε. If xn → a, then there exists N ∈ N such
that d(xn, a) < δ ∀ n ≥ N . Then dY (f(x), f(a)) < ε, i.e., f(x) converges to f(a)
as x converges to a.
Proof of (b) =⇒ (a)
Suppose f : X → Y is such that (b) holds but (a) does not hold, i.e., there exists
an ε > 0 such that for all δ > 0, there exists an x with dX(x, a) < δ for which
dY (f(x), f(a)) ≥ ε. Then for each n ∈ N, we can set δ = 1

n
, which gives an xn

with dX(xn, a) < 1
n

so that dY (f(xn), f(a)) ≥ ε. So, xn converges to a. But since
dY (f(x), f(a)) ≥ ε, so f(xn) does not converge to f(a), a contradiction to (b).
Therefore, (b) =⇒ (a).

(ii) Proof of (d) =⇒ (c’)
Consider any closed set C in Y . We want to prove that f−1(C) is closed in X. If
(d) is true, then

f(f−1(C)) ⊆ f(f−1(C)) (3)
We also have f(f−1(S)) ⊆ S for any subset S ⊆ Y . This is true because if x ∈
f(f−1(S)), then there exists y ∈ f−1(S) such that f(y) = x and since y ∈ f−1(S),
so f(y) ∈ S, which gives x ∈ S. Using this result in equation (3), we have

f(f−1(C)) ⊆ C = C

because C is closed in Y . We also have T ⊆ f−1(f(T )) for any subset T ⊆ X. This
is true because if x ∈ T and x ̸∈ f−1(f(T )), it gives f(x) ̸∈ f(T ), a contradiction
since x ∈ T . Therefore, using this result, we have

f−1(C) ⊆ f−1(f(f−1(C))) ⊆ f−1(C)
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Also since f−1(C) ⊆ f−1(C), so f−1(C) = f−1(C), i.e., f−1(C) is closed.
Proof of (c’) =⇒ (d)
Consider any subset S ⊆ X. We need to prove that f(S) ⊆ f(S) assuming (c’) is
true. Since f(S) is closed in Y , therefore by (c’), f−1(f(S)) is closed in X. Using
a result of the previous proof, we get

S ⊆ f−1(f(S)) ⊆ f−1(f(S)) (4)

Since f−1(f(S)) is closed in X, so f−1(f(S)) = f−1(f(S)). Therefore, equation (4)
becomes

S ⊆ f−1(f(S)) =⇒ f(S) ⊆ f(S)
Again, using a result of the previous proof, we have

f(S) ⊆ f(f−1(f(S))) ⊆ f(S)

Proof that (c) and (c’) are equivalent
We observe that f−1(SC) = (f−1(S))C for any subset S ⊆ Y . This is because

x ∈ f−1(SC) ⇐⇒ f(x) ∈ SC ⇐⇒ f(x) ̸∈ S ⇐⇒ x ̸∈ f−1(S) ⇐⇒ x ∈ (f−1(S))C

If A is closed in Y , then AC is open in Y , then f−1(AC) is open in X and therefore
by the previous observation, (f−1(A))C is open in X. Therefore, f−1(A) is closed
in X and hence (c) =⇒ (c’). Similarly, (c’) =⇒ (c), and we are done.

(iii) (d’) For any subset T of Y , f−1(T ◦) ⊆ (f−1(T ))◦, where A◦ denotes the interior of
A.
Proof of (d) =⇒ (d’)
Suppose (d) holds, i.e., for any subset S ⊆ X, f(S) ⊆ f(S). Let T be a subset of Y ,
and let U be an open set containing f−1(T ◦). Then f(U) is an open set containing
T ◦, which means

f(U) ⊆ T =⇒ f−1(f(U)) ⊆ f−1(T ) =⇒ U ⊆ f−1(T )

which means that f−1(T ◦) ⊆ (f−1(T ))◦.
Proof of (d’) =⇒ (d)
Suppose (d’) holds, i.e., for any subset T ⊆ Y , f−1(T ◦) = (f−1(T ))◦. Let S be
a subset of X, and let U be an open set containing S. Then f(U) is an open set
containing f(S), which means

f(U) ⊆ f(S) =⇒ f−1f(U) ⊆ f−1(f(S)) =⇒ U ⊆ f−1(f(S)) =⇒ S ⊆ f−1(f(S))

which gives f(S) ⊆ f(S).

Solution 5:
(i) We consider the max metric in X1 × X2 given by

d((x1, y1), (x2, y2)) = max(d((x1, x2), (y1, y2))

To show that open sets in (X1 ×X2, max metric) are precisely unions of sets of the
form (open ball of X1 × open ball of X2), we need to prove two things:
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(a) Every open set in X1 × X2 can be expressed as a union of sets of the form
(open ball of X1 × open ball of X2).

(b) Every union of sets of the form (open ball of X1 × open ball of X2) is an open
set in X1 × X2.

Proof of 1.
Let BX1×X2

r ((x0, y0)) be an open ball in X1 × X2, of radius r centered at (x0, y0).
We have,

BX1×X2
r ((x0, y0)) = {(x, y) | max(dX1(x, x0), dX2(y, y0)}

= {(x, y) | dX1(x, x0) < r, dX2(y, y0) < r}
= BX1

r (x0) × BX2
r (y0)

Therefore, every open set in X1 × X2 can be expressed as a union of sets of the
form (open ball of X1 × open ball of X2).
Proof of 2.
Consider a set of the form

BX1
r (x0) × BX2

s (y0) = {(x, y) | dX1(x, x0) < r, dX2(y, y0) < s}

We want to prove that this set is open in X1 × X2. Choose t such that

0 < t < min(r − dX1(x, x0), s − dX2(y, y0))

Then
BX1×X2

t ((x, y)) = {(x′, y′) | dX1(x, x′) < t, dX2(y, y′) < t}
and by triangle inequality, for (a, b) ∈ BX1×X2

t ((x, y)), we have

dX1(x0, a) ≤ dX1(x0, x) + dX1(x, a) < dX1(x0, x) + t < r

and,
dY1(y0, b) ≤ dX2(y0, y) + dX2(y, b) < dX2(y0, y) + t < s

and hence,
(a, b) ∈ BX1

r (x0) × BX2
s (y0)

It follows that
BX1×X2

t ((x, y)) ⊆ BX1
r (x0) × BX2

s (y0)
i.e., the open ball BX1×X2

t ((x, y)) is contained in BX1
r (x0) × BX2

s (y0). Therefore,
every union of sets of the form (open ball of X1 × open ball of X2) is an open set
in X1 × X2.
Yes, we can replace “open ball” with “arbitrary open set” of the respective Xi

spaces. This is because the definition of an open set in a metric space is a set that
contains an open ball around every point in the set. Hence, every open set in a
metric space can be expressed as a union of open balls.
The two projection maps π1 : X1 ×X2 → X1 and π2 : X1 ×X2 → X2 are continuous.
A map f : X → Y between two metric spaces (X, dX) and (Y, dY ) is continuous if
for every open set U in Y , the preimage f−1(U) is an open set in X. In this case, for
each open set U in X1 (or X2), the preimage π−1

1 (U) = U ×X2 (or π−1
2 (U) = X1×U)

is an open set in X1 × X2, because it is a product of open sets. Hence, both π1 and
π2 are continuous maps.
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(ii) Let (X, d) be a metric space and p be a fixed point in X. First, observe that the
function x → d(p, x) is continuous, since for every ϵ > 0, there exists a δ > 0 such
that

d(p, x) < δ =⇒ |d(p, x) − d(p, y)| < ϵ

Let (x, y) ∈ X × X and ϵ > 0. Let δ1 > 0 and δ2 > 0 be such that

d(p, x) < δ1 =⇒ |d(p, x)−d(p, z)| <
ϵ

2 and d(p, y) < δ2 =⇒ |d(p, y)−d(p, z)| <
ϵ

2

Define δ = min(δ1, δ2). Let (u, v) ∈ X ×X be such that d(x, u) < δ and d(y, v) < δ.
Then we have d(p, u) < δ1 and d(p, v) < δ2, so

|d(x, y) − d(u, v)| = |d(p, x) − d(p, u) + d(p, y) − d(p, v)|
≤ |d(p, x) − d(p, u)| + |d(p, y) − d(p, v)|

<
ϵ

2 + ϵ

2 = ϵ

Hence, (x, y) → d(x, y) is continuous at (x, y). Since this holds for every (x, y) ∈
X × X, it follows that the function (x, y) → d(x, y) is continuous on X × X.
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