Analysis Il HW 1

Nirjhar Nath
nirjhar@cmi.aci.in



Solution 1:

Proof of (b) = (a)

Suppose the norms || - || and || - ||" induce the same topology. We denote by B, (z) and

B! (x) the open balls of radius r centered at = € V' with respect to the norms || - || and

|| - ||' respectively. Since Bj(0) is open with respect to || - ||, so it is also open with respect

to || - ||". Therefore, since 0 € B;(0), so there exists a > 0 such that B/ (0) C B;(0).
Now choose any v € V and € > 0. Then

(a—¢)
[lv]l’

RS B;(O) - Bl(O)

and so,

vl <1

7

ol

ie.,
(a—&)llvl| < oll

Since this is true for every € > 0, so a||v|| < ||v]|'. A symmetric argument interchanging
the role of both the norms shows that there exists b > 0 such that ||v||" < b||v|| for every
v € V. Therefore, for every v € V', there exist a,b > 0 such that

allv]| < [lo]]" < bljv]]

i.e., the norms || - || and || - || are equivalent.

Proof of (¢) = (a)

Suppose (c) holds, i.e., a sequence x,, in V' converges under || - || <= it converges under
||-]|" and in that case the limit under each norm is the same. Let o := inf{||z,||' | n € N}
and [ := sup{||z,||' | n € N}. Then a and § are finite since z,, converges under || - ||'.
For each n, we have

allzn|| < [lzn|l” < b|2n||

where a = . As n — o0, a,b > 0 and independent of {z,}.

Solution 2:
(i) Suppose T is open in S. Then for any ¢t € T', 3 r, > 0 such that
d(t,a) <rpanda€ S = a€T
Define
V= J B.(z)

zeX

where B,_(x) are open balls (centered at z with radius r,) in X. We shall prove
that T'= SNV, as follows. We have,

teT = teSandte B, () CV = te SNV
Also,

te SNV = te SNB,, (x) for some B, (x) = d(t,z)<r, = t€T (ast €S)

2



Therefore, T'=5SNV.

Now we prove the other direction. Let V' be an open set in X such that T'=SNV.
Thent € T = t € V. So, there exists € > 0 such that the open ball B.(t) C V.
So, B.(t)NS C T. Therefore, T is open in S.

Now we prove the next part of the problem. If T"is open in S, then there exists a
set V in X such that T'= SN V. Since S is open in X, there exists a set U in X
such that S = X NU. So we have T'= X N (U NV), which means that 7" is open
in X.

Now we prove the other direction. If 7" is open in X, then there exists a set V' in
X such that T'= X NV. Since S is open in X, there exists a set U in X such that
S=XnNU. Sowehave T'= 5N (UNV), which means that 7" is open in S.

(ii) The analogous statement for closed sets is “A subset T" of S is closed in the metric
space S if and only if there exists a set F' closed in X such that "= SN F. If S is
closed in X, then T is closed in S <= T is closed in X
Proof. If T is closed in S, then its complement in S, S\ 7, is open in S. By
definition of closed sets, there exists a set V' in X such that S\ T = SNV. Since
S is closed in X, there exists a set U in X such that S = X \ U. So we have
S\T =X\ (UNV), which means that T = X \ (U N V)®. Since the complement
of an open set is closed, (U N V)¢ is closed in X, and so T is closed in X.

Now we prove the other direction. If T is closed in X, then its complement in X,
X \ T, is open in X. By definition of closed sets, there exists a set V' in X such
that X \ 7= X NV. Since S is closed in X, there exists a set U in X such that
S=X\U. Sowehave X \T = SN (UNV), which means that = S\ (UNV)°.
Since the complement of an open set is closed, (U NV is closed in S, and so T is
closed in S.

Solution 3:

(i) Proof of (a) = (b)
For every n € N, consider the open balls B1(z) of radius %

centered at x € X.
Assuming (a) is true, we have at least one point in Bi(x) N S for every n € N.
Consider one point x,, from every Bi(xz)NS. !

Claim. The sequence {z,} convergesn to .

Proof. Consider any € > 0. Choose N € N such that N > % Then for any n > N,
we have

1
d(zp,z) < — < N <€

SRS

i.e., x, converges to x.

Proof of (b) = (a)

Assume, to the contrary, that (b) is true but (a) is not. Then there exists § > 0
such that

B(;(ZL') ns =

¢
Thus, for any a € S,a € Bs(z) (i.e., d(a,x) > §) and any sequence {z,} in S,
{z,,} does not converge to x, because d(z,,z) > J ¥V n € N. So, no sequence in S
converges to x, a contradiction.



(i)

(iii)

Define
By (x)\{z} :={t | d(z,t) <rtF#ax}
and call it the deleted ball of radius r centered at z. The analogues of (a) and (b)
in (i) are:
(a) The intersection of S with every deleted ball centered at = contains at least
one point.

(b) There is a sequence {z,} in S converging to x with x,, # x ¥V n € N.

Proof of (a) = (b)

We consider Bi(x)\ {z} instead of Bi(x) and the remaining is same as that of (i).
Proof of (b) = (a)

We consider Bs(x) \ {z} instead of Bs(z) and the remaining is same as that of (i).

Let
By(c) ={z | d(c,x) <r}

To show that B! (c) is closed, we need to show that its complement
X\ B.(c)=A{z|d(c,z) >r}
is open. Let y € X \ B..(c). Then d(c,y) > r. Choose € > 0 such that
0<e<d(cz)—r
Then for any z € B.(y), by triangle inequality, we have
d(e,z) > d(c,y) —d(z,y) > d(c,y) —e >r

Therefore, z € X \ Bl.(c). Thus, for every y € X \ B.(c), there is an open ball
centered at y contained in X \ B/ (c), i.e., X \ B.(c) is open, i.e., B.(c) is closed.

Consider the metric space X = {a, b, ¢} with the following metric:
d(a,b) =d(b,c) =1,d(a,c) =2

Let r = 1 and let ¢ = a. Here, the set {x | d(c,z) < r} is not the closure of the
open ball B,(a), since it includes the point b which is not in the open ball. So, in a

general metric space, the set {z | d(c,z) < r} need not be the closure of the open
ball {z | d(c,x) <r}.

In the Euclidean space R", the closure of the set B.(c) = {z | d(c,z) < r} is
the set Bl.(c) = {z | d(c,x) < r}. We denote by A the closure of set A. We want
to show that B,(c) = B.(c). By the first part of this problem, we have B.(c) is the
closed set containing B,.(c) and B, (c) is the intersection of all closed sets containing
B,(c). So,

B,(c) € By(c) (1)

Let x € Bl.(c). If x € B,(c), then clearly x € B,(c). If z € Bl.(c) \ B,(c), then we
claim that z is a limit point of B,(c). We prove this as follows.



Consider the sequence {x,} defined by

1 1
xn:c+(1—>x
n n

(=D (- = (-2

and hence z,, € B,(c). Also,

Then,

d(zy, ¢) = [le=zal| = |

1 1
—r — —c
n n

1 1

d(zp, x) = ||z —x,]| = :ﬁ]|x—c|lzﬁr>0

and hence d(z,,z) — 0 as n — oo, i.e., &, — x as n — oo with z,, #x V n € N.
So, z is a limit point of B,(c) and hence = € B,(c). Therefore,

B/(c) € B, (c) (2)

So, combining equations (1) and (2), we have B,(c) = B.(c).

Solution 4:

(i)

Proof of (a) = (b)

Suppose f: X — Y satisfies condition (a). We need to show that f(z,) converges
to f(a). Take any ¢ > 0. Then for any a € X, there exists § > 0 such that
dx(z,a) < 0 = dy(f(x), f(a)) < e. If z, — a, then there exists N € N such
that d(z,,a) < d V' n > N. Then dy(f(z), f(a)) < e, i.e., f(z) converges to f(a)
as x converges to a.

Proof of (b) = (a)

Suppose f : X — Y is such that (b) holds but (a) does not hold, i.e., there exists
an € > 0 such that for all § > 0, there exists an x with dx(x,a) < ¢ for which
dy(f(z), f(a)) > e. Then for each n € N, we can set § = X, which gives an z,
with dx (2,,a) < £ so that dy(f(zn), f(a)) > €. So, @, converges to a. But since
dy(f(x), f(a)) > €, so f(z,) does not converge to f(a), a contradiction to (b).
Therefore, (b) = (a).

Proof of (d) = (¢)

Consider any closed set C' in Y. We want to prove that f~!(C) is closed in X. If
(d) is true, then

fFUFHC)) € F(F1O)) (3)
We also have f(f~1(S)) C S for any subset S C Y. This is true because if r €
F(f71(S)), then there exists y € f~'(S) such that f(y) = z and since y € f~(S),
so f(y) € S, which gives € S. Using this result in equation (3), we have

fFIe)cc=c

because C'is closed in Y. We also have T'C f~1(f(T)) for any subset T'C X. This
is true because if x € T and x= &€ f~1(f(T)), it gives f(z) & f(T), a contradiction
since x € T'. Therefore, using this result, we have

FHO) S FUFHO)) S fH(O)

D



Also since f~HC) C f=1(C), so f~HC) = f~1C), i.e., fHC) is closed.
Proof of (¢’) = (d)
Consider any subset S C X. We need to prove that f(S) C f(S) assuming (c’) is

true. Since f(S) is closed in Y, therefore by (¢’), f~(f(S)) is closed in X. Using

a result of the previous proof, we get

SCFHf9) S () (4)

Since f~1(f(9)) is closed in X, so f~1(f(S)) = f~1(f(S)). Therefore, equation (4)
becomes

S C fTUf(9) = f(S) S f(S)
Again, using a result of the previous proof, we have
F(8) S F(FTHSS)) € £(9)

Proof that (¢) and (c’) are equivalent
We observe that f~1(S%) = (f71(9))¢ for any subset S C Y. This is because

v € fTH(SY) = f(a) €8 = f(a) ¢ S = ¢ [T1(S) <= € (f71(9))

If A is closed in Y, then A® is open in Y, then f~!(A%) is open in X and therefore
by the previous observation, (f~!(A))¢ is open in X. Therefore, f~*(A) is closed
in X and hence (¢) = (¢’). Similarly, (¢’) = (c), and we are done.

(iii) (d’) For any subset T of Y, f~1(T°) C (f~(T))°, where A° denotes the interior of
A.
Proof of (d) = (d)
Suppose (d) holds, i.e., for any subset S C X, f(S) C f(S). Let T be a subset of Y,
and let U be an open set containing f~(7°). Then f(U) is an open set containing
T°, which means

fO)ST = fFHfU) S f(T) = UC D)

which means that f~1(7°) C (f~1(T))°.

Proof of (d’) = (d)

Suppose (d’) holds, i.e., for any subset T C Y, f~1T°) = (f~1(T))°. Let S be
a subset of X, and let U be an open set containing S. Then f(U) is an open set
containing f(.S), which means

fU) S f(S) = AU CUf(S) = UC fHf(S) = SCf(f(9)

which gives f(S) C f(9).

Solution 5:
(i) We consider the max metric in X; x X5 given by
d((z1,91), (w2, 92)) = max(d((x1, x2), (y1,y2))

To show that open sets in (X7 x X5, max metric) are precisely unions of sets of the
form (open ball of X; x open ball of X5), we need to prove two things:
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(a) Every open set in X; x X, can be expressed as a union of sets of the form
(open ball of X; x open ball of X,).

(b) Every union of sets of the form (open ball of X; x open ball of X5) is an open
set in X1 X XQ.

Proof of 1.
Let BX1*X2((z4,10)) be an open ball in X; x X,, of radius r centered at (g, yo).
We have,

B2 (w0, y0)) = {(2,y) | max(dx, (x,20), dx, (y, yo)}
= {(x7y> | Xm(ZL',ZL'[)) <, dXQ(yayO) < T}
= B! (o) x B (yo)
Therefore, every open set in X; x X5 can be expressed as a union of sets of the
form (open ball of X; x open ball of X5).

Proof of 2.
Consider a set of the form

B:ﬁ (l’o) X 85(2(3/0) = {(x,y) ‘ Xm (33,%’0) <r, dX2(y,y0) < S}
We want to prove that this set is open in X; x X,. Choose t such that
0<t< min(r - Xm (.flf, xO)? s — dX2<y7y0))

Then
B (2, ) = {(,/) | i (0,0') < s (09) < 1}

and by triangle inequality, for (a,b) € B*"***((z,v)), we have
dx, (zo,a) < dx, (xo,x) +dx, (z,a) < dx,(xg,x) +t <7

and,
le (y07 b) S dX2<y07 y) + dXQ(?/; b) < dXz(y(]?y) +t<s

and hence,
(a,b) € B, (xo) x B;*(yo)

It follows that

i.e., the open ball B{"**((x,y)) is contained in B:X'(xy) x BX2(yy). Therefore,
every union of sets of the form (open ball of X; x open ball of X5) is an open set
in X1 X XQ.

Yes, we can replace “open ball” with “arbitrary open set” of the respective Xj;
spaces. This is because the definition of an open set in a metric space is a set that
contains an open ball around every point in the set. Hence, every open set in a
metric space can be expressed as a union of open balls.

The two projection maps 7 : X1 X X9 — X; and w5 : X7 X Xy — X, are continuous.

A map f: X — Y between two metric spaces (X, dx) and (Y, dy) is continuous if
for every open set U in Y, the preimage f~!(U) is an open set in X. In this case, for
each open set U in X; (or X5), the preimage m; ' (U) = U x X, (or w3 '(U) = X; xU)
is an open set in X; x X5, because it is a product of open sets. Hence, both m; and
Ty are continuous maps.



(ii) Let (X,d) be a metric space and p be a fixed point in X. First, observe that the
function © — d(p, z) is continuous, since for every € > 0, there exists a § > 0 such
that

d(p,x) <6 = |d(p,x) —d(p,y)| < e

Let (z,y) € X x X and € > 0. Let 6; > 0 and d2 > 0 be such that
€ €

Define 6 = min(dy, d2). Let (u,v) € X x X be such that d(z,u) < ¢ and d(y,v) < 9.
Then we have d(p,u) < ¢; and d(p,v) < g, SO

< |d(p, x) = d(p,u)| + |d(p,y) = d(p, )]
€ €
< 5 + 5 — €
Hence, (z,y) — d(z,y) is continuous at (z,y). Since this holds for every (z,y) €
X x X, it follows that the function (x,y) — d(z,y) is continuous on X x X.



