1 ANA-2 MIDSEM QN-3

A function $f : (X, d_X) \to (Y, d_Y)$ between between metric spaces is called uniformly continuous if for every pair of points x_1, x_2 in X the following is true: \cdots (Complete the sentence). Using problem 2 or otherwise show that if f is continuous and X is compact, then (i) $f(X)$ is compact (ii) f is uniformly continuous.

Solution :-

[1 mark] A function $f : (X, d_X) \to (Y, d_Y)$ between between metric spaces is called *uniformly continuous* if for all $\epsilon > 0$ there exists $\delta > 0$ such that for any $x_1, x_2 \in X$ we have $d_X(x_1, x_2) < \delta \implies d_Y(f(x_1), f(x_2)) < \epsilon$

(i) [3 marks] We want to show that $f(X)$ is compact, Let ${O_{\alpha}}_{\alpha \in A}$ is an open cover of $f(X)$ then we notice that $\{f^{-1}(O_\alpha)\}_{\alpha \in A}$ is an open cover of X because each $f^{-1}(O_\alpha)$ is open because O_α is open and

$$
x \in \bigcup_{\alpha \in A} f^{-1}(O_{\alpha}) \iff \exists \alpha \in A \ (x \in f^{-1}(O_{\alpha})) \iff \exists \alpha \in A \ (f(x) \in O_{\alpha})
$$

$$
\iff f(x) \in f(X) \iff x \in X
$$

Where the second last equivalence is true because ${O_{\alpha}}_{\alpha \in A}$ is an open cover of $f(X)$. Now since $\{f^{-1}(O_\alpha)\}_{\alpha \in A}$ is an open cover of X it must have a finite subcover, hence say $\{f^{-1}(O_{\alpha_i})\}_{i=1}^n$ is the finite subcover of $\{f^{-1}(O_\alpha)\}_{{\alpha\in A}}$, then we see that $\{O_{\alpha_i}\}_{i=1}^n$ is an open cover of $f(X)$ because

$$
X = \bigcup_{i=1}^{n} f^{-1}(O_{\alpha_i}) \implies f(X) = f(\bigcup_{i=1}^{n} f^{-1}(O_{\alpha_i})) = \bigcup_{i=1}^{n} f(f^{-1}(O_{\alpha_i})) \subseteq \bigcup_{i=1}^{n} O_{\alpha_i}
$$

Hence we have shown that ${O_{\alpha_i}}_{i=1}^n$ is an open cover of $f(X)$ which is also a finite subcover of $\{O_{\alpha}\}_{{\alpha}\in A}$, hence proved $f(X)$ is compact. Note :- it is not sufficient to show that $f(X)$ has some open finite cover, ${Y}$ is a finite open cover of $f(X)$.

(ii) $[4 \text{ marks}]$ We want to show that f is uniformly continuous, Suppose that f is not uniformly continuous then $\exists \epsilon > 0$ such that $\forall \delta > 0$ $\exists x, y \in X$ such that $d_X(x, y) < \delta$ but $d_Y(f(x), f(y)) \geq \epsilon$, this means that $\forall n \in \mathbb{N}$ $\exists x_n, y_n$ such that $d_X(x_n, y_n) < \frac{1}{n}$ $\frac{1}{n}$ but $d_Y(f(x_n), f(y_n)) \geq \epsilon$ Now since X is compact and $\{x_n\}$ is a sequence, using problem 2 part (iii), we extract a convergent sub-sequence of $\{x_n\}$ say $\{x_{n_k}\}\$ and $x_{n_k} \to x$, then we see that

 $y_{n_k} \to x$ also because if $N_1 \in \mathbb{N}$ such that $k \geq N_1 \implies d_X(x_{n_k}, y_{n_k}) < \frac{\epsilon'}{2}$ 2 and if $k \geq N_2 \implies d_X(x_{n_k}, x) < \frac{\epsilon'}{2}$ $\frac{c}{2}$ then by triangle inequality we have $d_X(y_{n_k}, x) \le d_X(x_{n_k}, y_{n_k}) + d_X(x_{n_k}, x) < \epsilon'$ for all $k > \max(N_1, N_2)$. Now we see since $x_{n_k}, y_{n_k} \to x$ we have $f(x_{n_k}), f(y_{n_k}) \to f(x)$ by continuity. hence there exists $K_1, K_2 \in \mathbb{N}$ such that $k \geq K_1 \implies d_Y(f(x_{n_k}), f(x)) < \frac{\epsilon}{2}$ $\frac{1}{2}$ and $k \geq K_2 \implies d_Y(f(y_{n_k}), f(y)) < \frac{\epsilon}{2}$ $\frac{c}{2}$ hence $d(f(x_{n_k}), f(y_{n_k})) < \epsilon$ for all $k > \max(K_1, K_2)$ which is a contradiction, hence proved.