Assignment 1

APRG TAs

January 2023

§1 Problem 1

You are given an an array A and a number N, determine if there exist indices $i \neq j$ such that $A[i] \times A[j] = N$

Input:

The first line contains an array A in the form of space separated integers. The second line contains a number **N**.

Output:

Print "YES" if such indices as mentioned above exist, otherwise print "NO".

Examples:

Input: $9\ 8\ 2\ 4\ 2\ 1\ 7\ 3$ 32

Output: YES

Input: $9\ 18\ 2\ 5\ 2\ 1\ 37\ 3$ 31

Output:

NO

§2 Problem 2

Given 2 strings **A** and **B**, determine whether **B** is a substring of **A**.

Input:

The first line contains a string **A**. The second line contains a string **B**.

Output:

If **B** is a substring of **A**, print the indices *i*, *j* separated by a space such that $\mathbf{A}[\mathbf{i}:\mathbf{j}] = \mathbf{B}$, otherwise print -1.

Examples:

Input: **MathEmatiCAl**

emAt

Output: 48

Input: **OxIdeCopPer** OprE

Output:

-1

§3 Problem 3

Given 2 arrays A and B of decimal numbers, both of same length n, print an array C with $C[i] = A[i] \times B[i]$ in binary.

Input:

The first line contains an array \mathbf{A} in the form of space separated integers. The second line contains an array \mathbf{B} in the form of space separated integers.

Output:

Print the array ${\bf C}$ in the form of space separated binary numbers.

Examples:

Input: 2 4 2 1 5 3 2 9 7 6 4 0 8 1 8 3

Output: 1110 11000 1000 0 101000 11 10000 11011

§4 Problem 4

Given a number \mathbf{N} , print its prime factors without multiplicity in decreasing order.

Input:

The first line contains \mathbf{N} .

Output:

Print its prime factors separated by space in decreasing order.

Examples:

Input: 180

Output: 5 3 2

Input: 29

Output: 29