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Solution 1:
Let C ⊂ Y be a connected subset. Assume, to the contrary, that O1, O2 ⊂ X are open
subsets that witness the disconnectedness of f−1(C), i.e., f−1(C) ⊆ O1 ∪ O2 and O1 ∩
f−1(C) ̸= ∅ and O2∩f−1(C) ̸= ∅ and O1∩O2∩f−1(C) = ∅. We observe that f(O1), f(O2)
are open in Y and that C ⊂ f(O1) ∪ f(O2) (find a preimage c′ ∈ X for some c ∈ C, i.e.,
f(c′) = c; this c′ ∈ f−1(C) is in O1 or O2 and hence f(c′) = c is in one of f(O1), f(O2) as
well). Now, f(c′) ∈ C ∩ f(O1) for an c′ ∈ O1 ∩ f−1(C). Similarly, f(O2) ∩ C ̸= ∅.

Suppose C ∩ f(O1) ∩ f(O2) ̸= ∅. Then consider c ∈ C ∩ f(O1) ∩ f(O2). We observe
that Fc := f−1({f(c)}) ̸= ∅. This means that O1 and O2 witness the disconnectedness of
Fc, which cannot happen by assumption. So, C ∩ f(O1) ∩ f(O2) = ∅ and it follows that
C is not connected, a contradiction.

Thus, f−1(C) is connected. ■

Solution 4 (ii):
Let f ∈ C0([−π, π]) which satisfies for some C > 0, α ∈ (0, 1],

|f(x) − f(y)| ≤ C|x − y|α

for all x, y ∈ [−π, π]. We suppose

Dn(x) = 1
π

· sin((n + 1/2)x)
sin(x/2) .

Then the trucated Fourier series is

Sn(f)(x) =
∫ π

−π
Dn(y)f(x − y)dy

=
∫ π

0
Dn(y)f(x + y) + f(x − y)

2 dy.

Let f be defined as above and C be a uniform bound for f . Let δ ∈ (0, π) be fixed. Then
there exists a constant K such that 1

sin(x/2) is uniformly bounded by K on [δ, π]. Also,
there exists a piecewise linear continuous and 2π periodic function fϵ that is bounded by
C and satisfies ∫ 2π

0
|f(x) − fϵ(x)|dx <

πϵ

K
.

Then, ∣∣∣∣∣
∫ π

δ
Dn(y)f(x + y) + f(x − y) − fϵ(x + y) − fϵ(x − y)

2 dy

∣∣∣∣∣
≤ K

2π

∫ π

δ
|f(x + y) − fϵ(x + y)| + |f(x − y) − fϵ(x − y)|

<
K

2π
· πϵ

K
= ϵ

2 .

Using integration by parts, we can show that the integral∫ π

δ
Dn(y)fϵ(x + y) + fϵ(x − y)

2 dy =: Sn(fϵ)(x)
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converges to 0 uniformly. Therefore, the integral

Sn(f)(x) =
∫ π

δ
DN(y)f(x + y) + f(x − y)

2 dy

also converges to 0 uniformly for fixed δ > 0. Therefore,

Sn(f)(x) − f(x) =
∫ δ

0
Dn(y)

[
f(x − y) + f(x + y)

2 − f(x)
]

dy + En(x),

where En(x) converges to 0 uniformly regardless of the choice of δ > 0.
Thus, given any ϵ > 0, we can choose δ > 0 such that

C
∫ δ

0

| sin((n + 1/2)y|
| sin(y/2)| |y|αdy <

ϵ

2 ,

and then choose N large enough such that En(x) is uniformly bounded by ϵ/2 for n > N .
It follows that |Sn(f)(x)−f(x)| < ϵ ∀ x, i.e., the set {Sn(f) : n ∈ Z} converges uniformly
to f . ■

Solution 5:
Let V = Cper[0, 2π] be the set of all 2π-periodic functions with the usual sup norm
denoted by || · ||. Let Ex be the dense Gδ-set of continuous 2π-periodic functions in V
such that the Fourier series of these functions diverge at x. Let {xi} be a countable set
of points in [0, 2π] and let

E =
n⋂

i=1
Exi

⊂ V.

Then by Baire’s theorem, E is also a dense Gδ-set. (Since each Exi
is the countable

intersection of dense open sets, so the same is true for E.) Thus, for every f ∈ E, the
Fourier series of f diverges at xi ∀ i (Part A, Problem 6). Define

s∗(f ; x) := sup
n

sn(f)(x).

Then s∗ is a lower semi-continuous function, as it is the supremum of a collection of
continuous functions. Therefore, for each f , the set Qf := {x : s∗(f ; x) = ∞} is a Gδ-set
in (0, 2π). If we choose the xi’s such that their union is dense in (0, 2π), then we have
the following result.

Lemma: The set E ⊂ V is a Gδ-set such that ∀ f ∈ E, the set Qf ⊂ (0, 2π) where its
Fourier series diverges, is a dense Gδ-set in (0, 2π).

We can now show that Qf is indeed countable (see the following lemma).

Lemma: In a complete metric space X which has no isolated points, no countable
dense set is a Gδ.
Proof: Let E = {x1, x2, . . . , xn} be a countable dense set in X. Assume E is Gδ. Then
E = ∩∞

n=1Wn, where each Wn is dense and open. Then by hypothesis,

Wn \
∞⋃

i=1
{xi} =: Vn

is also open and dense. But then, ∩∞
n=1Vn = ∅, which is a contradiction to Baire’s theorem.

Thus, Qf is countable. Therefore, there exists uncountably many continuous functions
on [0, 2π], whose Fourier series diverge on a dense Gδ subset of [0, 2π]. ■
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Solution 7:
We consider the function f(x) = x2 on [−π, π] and find its expansion into a trigonometric
Fourier series

a0

2 +
∞∑

n=1
(an cos nx + bn sin nx)

which is periodic and converges to f(x) in [−π, π]. Since f(x) is even, it is enough to
determine the coefficients

an = 1
π

∫ π

−π
f(x) cos nx dx

for n = 0, 1, 2, . . . because we have,

bn = 1
π

∫ π

−π
f(x) sin nx dx = 0 ∀ n ∈ N.

For n = 0, we have
a0 = 1

π

∫ π

−π
x2dx = 2

π

∫ π

0
x2dx = 2π2

3 .

For n ∈ N, we have

an = 1
π

∫ π

−π
x2 cos nx dx = 2

π

∫ π

0
x2 cos nx dx = 2

π
· 2π

n2 (−1)n = (−1)n 4
n2 ,

because ∫
x2 cos nx dx = 2x

n2 cos nx +
(

x2

n
− 2

n3

)
sin nx + C.

Thus,
f(x) = π2

3 +
∞∑

n=1

(
(−1)n 4

n2 cos nx
)

.

Putting x = π, we get

π2 = π2

3 +
∞∑

n=1

(
(−1)n 4

n2 cos (nπ)
)

= π2

3 + 4
∞∑

n=1

(
(−1)n(−1)n 1

n2

)
.

Thus, we get
2π2

3 = 4
∞∑

n=1

1
n2 ,

and hence,
∞∑

n=1

1
n2 = π2

6 ,

as required. ■
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