Analysis II Endsem Part B

Nirjhar Nath nirjhar@cmi.ac.in BMC202239

Solution 1:

Let $C \subset Y$ be a connected subset. Assume, to the contrary, that $O_1, O_2 \subset X$ are open subsets that witness the disconnectedness of $f^{-1}(C)$, i.e., $f^{-1}(C) \subseteq O_1 \cup O_2$ and $O_1 \cap f^{-1}(C) \neq \emptyset$ and $O_2 \cap f^{-1}(C) \neq \emptyset$ and $O_1 \cap O_2 \cap f^{-1}(C) = \emptyset$. We observe that $f(O_1), f(O_2)$ are open in Y and that $C \subset f(O_1) \cup f(O_2)$ (find a preimage $c' \in X$ for some $c \in C$, i.e., f(c') = c; this $c' \in f^{-1}(C)$ is in O_1 or O_2 and hence f(c') = c is in one of $f(O_1), f(O_2)$ as well). Now, $f(c') \in C \cap f(O_1)$ for an $c' \in O_1 \cap f^{-1}(C)$. Similarly, $f(O_2) \cap C \neq \emptyset$.

Suppose $C \cap f(O_1) \cap f(O_2) \neq \emptyset$. Then consider $c \in C \cap f(O_1) \cap f(O_2)$. We observe that $F_c := f^{-1}(\{f(c)\}) \neq \emptyset$. This means that O_1 and O_2 witness the disconnectedness of F_c , which cannot happen by assumption. So, $C \cap f(O_1) \cap f(O_2) = \emptyset$ and it follows that C is not connected, a contradiction.

Thus, $f^{-1}(C)$ is connected.

Solution 4 (ii):

Let $f \in C^0([-\pi,\pi])$ which satisfies for some $C > 0, \alpha \in (0,1]$,

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$

for all $x, y \in [-\pi, \pi]$. We suppose

$$D_n(x) = \frac{1}{\pi} \cdot \frac{\sin((n+1/2)x)}{\sin(x/2)}$$

Then the trucated Fourier series is

$$S_n(f)(x) = \int_{-\pi}^{\pi} D_n(y) f(x-y) dy$$

= $\int_0^{\pi} D_n(y) \frac{f(x+y) + f(x-y)}{2} dy.$

Let f be defined as above and C be a uniform bound for f. Let $\delta \in (0, \pi)$ be fixed. Then there exists a constant K such that $\frac{1}{\sin(x/2)}$ is uniformly bounded by K on $[\delta, \pi]$. Also, there exists a piecewise linear continuous and 2π periodic function f_{ϵ} that is bounded by C and satisfies

$$\int_0^{2\pi} |f(x) - f_\epsilon(x)| dx < \frac{\pi\epsilon}{K}$$

Then,

$$\begin{split} & \left| \int_{\delta}^{\pi} D_n(y) \frac{f(x+y) + f(x-y) - f_{\epsilon}(x+y) - f_{\epsilon}(x-y)}{2} dy \right| \\ & \leq \frac{K}{2\pi} \int_{\delta}^{\pi} |f(x+y) - f_{\epsilon}(x+y)| + |f(x-y) - f_{\epsilon}(x-y)| \\ & < \frac{K}{2\pi} \cdot \frac{\pi\epsilon}{K} = \frac{\epsilon}{2}. \end{split}$$

Using integration by parts, we can show that the integral

$$\int_{\delta}^{\pi} D_n(y) \frac{f_{\epsilon}(x+y) + f_{\epsilon}(x-y)}{2} dy =: S_n(f_{\epsilon})(x)$$

converges to 0 uniformly. Therefore, the integral

$$S_n(f)(x) = \int_{\delta}^{\pi} D_N(y) \frac{f(x+y) + f(x-y)}{2} dy$$

also converges to 0 uniformly for fixed $\delta > 0$. Therefore,

$$S_n(f)(x) - f(x) = \int_0^\delta D_n(y) \left[\frac{f(x-y) + f(x+y)}{2} - f(x) \right] dy + E_n(x),$$

where $E_n(x)$ converges to 0 uniformly regardless of the choice of $\delta > 0$.

Thus, given any $\epsilon > 0$, we can choose $\delta > 0$ such that

$$C \int_0^{\delta} \frac{|\sin((n+1/2)y)|}{|\sin(y/2)|} |y|^{\alpha} dy < \frac{\epsilon}{2},$$

and then choose N large enough such that $E_n(x)$ is uniformly bounded by $\epsilon/2$ for n > N. It follows that $|S_n(f)(x) - f(x)| < \epsilon \forall x$, i.e., the set $\{S_n(f) : n \in \mathbb{Z}\}$ converges uniformly to f.

Solution 5:

Let $V = C_{\text{per}}[0, 2\pi]$ be the set of all 2π -periodic functions with the usual sup norm denoted by $|| \cdot ||$. Let E_x be the dense G_{δ} -set of continuous 2π -periodic functions in Vsuch that the Fourier series of these functions diverge at x. Let $\{x_i\}$ be a countable set of points in $[0, 2\pi]$ and let

$$E = \bigcap_{i=1}^{n} E_{x_i} \subset V.$$

Then by Baire's theorem, E is also a dense G_{δ} -set. (Since each E_{x_i} is the countable intersection of dense open sets, so the same is true for E.) Thus, for every $f \in E$, the Fourier series of f diverges at $x_i \forall i$ (Part A, Problem 6). Define

$$s^*(f;x) := \sup_n s_n(f)(x).$$

Then s^* is a lower semi-continuous function, as it is the supremum of a collection of continuous functions. Therefore, for each f, the set $Q_f := \{x : s^*(f; x) = \infty\}$ is a G_{δ} -set in $(0, 2\pi)$. If we choose the x_i 's such that their union is dense in $(0, 2\pi)$, then we have the following result.

Lemma: The set $E \subset V$ is a G_{δ} -set such that $\forall f \in E$, the set $Q_f \subset (0, 2\pi)$ where its Fourier series diverges, is a dense G_{δ} -set in $(0, 2\pi)$.

We can now show that Q_f is indeed countable (see the following lemma).

Lemma: In a complete metric space X which has no isolated points, no countable dense set is a G_{δ} .

Proof: Let $E = \{x_1, x_2, \ldots, x_n\}$ be a countable dense set in X. Assume E is G_{δ} . Then $E = \bigcap_{n=1}^{\infty} W_n$, where each W_n is dense and open. Then by hypothesis,

$$W_n \setminus \bigcup_{i=1}^{\infty} \{x_i\} =: V_n$$

is also open and dense. But then, $\bigcap_{n=1}^{\infty} V_n = \emptyset$, which is a contradiction to Baire's theorem.

Thus, Q_f is countable. Therefore, there exists uncountably many continuous functions on $[0, 2\pi]$, whose Fourier series diverge on a dense G_{δ} subset of $[0, 2\pi]$.

Solution 7:

We consider the function $f(x) = x^2$ on $[-\pi, \pi]$ and find its expansion into a trigonometric Fourier series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

which is periodic and converges to f(x) in $[-\pi, \pi]$. Since f(x) is even, it is enough to determine the coefficients

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$

for $n = 0, 1, 2, \ldots$ because we have,

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = 0 \,\,\forall \, n \in \mathbb{N}.$$

For n = 0, we have

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2\pi^2}{3}.$$

For $n \in \mathbb{N}$, we have

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx \, dx = \frac{2}{\pi} \cdot \frac{2\pi}{n^2} (-1)^n = (-1)^n \frac{4}{n^2},$$

because

$$\int x^{2} \cos nx \, dx = \frac{2x}{n^{2}} \cos nx + \left(\frac{x^{2}}{n} - \frac{2}{n^{3}}\right) \sin nx + C.$$

Thus,

$$f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \left((-1)^n \frac{4}{n^2} \cos nx \right).$$

Putting $x = \pi$, we get

$$\pi^{2} = \frac{\pi^{2}}{3} + \sum_{n=1}^{\infty} \left((-1)^{n} \frac{4}{n^{2}} \cos\left(n\pi\right) \right) = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} \left((-1)^{n} (-1)^{n} \frac{1}{n^{2}} \right).$$

Thus, we get

$$\frac{2\pi^2}{3} = 4\sum_{n=1}^{\infty} \frac{1}{n^2},$$

and hence,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6},$$

as required.