Analysis II Assignment 1,2

Nirjhar Nath nirjhar@cmi.ac.in BMC202239

Solution 1:

Let $d: X \times X \to [0, \infty)$ be a pseudo metric. Define $x \sim y$ if d(x, y) = 0. Let $\tilde{X} = X/\sim$ and define $\tilde{d}: \tilde{X} \times \tilde{X} \to [0, \infty)$ by $\tilde{d}([x], [y]) = d(x, y)$. We check the properties of metric.

- 1. Proof that $\tilde{d}([x], [y]) = 0 \iff [x] = [y]$ If $\tilde{d}([x], [y]) = 0$, then d(x, y) = 0, i.e., $x \sim y$. Also, if [x] = [y], then $x \sim y$, which implies $d(x, y) = 0 = \tilde{d}([x], [y])$.
- 2. Proof that $\tilde{d}([x], [y]) = \tilde{d}([y], [x])$ Since d is a pseudo metric, so $\tilde{d}([x], [y]) = d(x, y) = d(y, x) = \tilde{d}([y], [x])$.
- $\begin{array}{l} 3. \ \ \frac{\text{Proof that } \tilde{d}([x],[y]) \leq \tilde{d}([x],[z])\tilde{d}([z],[y])}{\text{Similar to the above, } \tilde{d}([x],[y]) = d(x,y) \leq d(x,z) + d(z,y) = \tilde{d}([x],[z])\tilde{d}([z],[y]). \end{array}$

Therefore, \tilde{d} is a well-defined metric.

Let $x \in A$. Since A is open, there exists an open ball $B_r(x) \subseteq A$ for some r > 0. Therefore, if $y \in [x]$, then $d(x, y) = 0 < r \implies y \in A$, which implies $[x] \subseteq A$. Then, $A = \bigcup_{x \in A} [x]$ is a union of equivalence classes.

Take any $[x] \in \pi(A)$ then $x \in A$ and there exists an open ball $B_r(x) \subseteq A$ for some r > 0. Now if $[y] \in B_r([x])$ in \tilde{X} , then $\tilde{d}([x], [y]) < r$. Therefore, $d(x, y) < r \implies y \in B_r(x) \subset A$. Hence, $\pi(A)$ is open in \tilde{X} .

Solution 2:

 \mathbb{R}^* is the extended real number system $[-\infty,\infty]$. Define $f:\mathbb{R}^*\to [-1,1]$ by

$$f(x) = \frac{x}{1+|x|} \quad \forall x \in (-\infty, \infty), \quad f(-\infty) = -1, \quad f(\infty) = 1.$$

To show that f is an injection, we need to show that $f(x_1) = f(x_2) \implies x_1 = x_2$. We have,

$$f(x_{1}) = f(x_{2})$$

$$\implies \frac{x_{1}}{1 + |x_{1}|} = \frac{x_{2}}{1 + |x_{2}|}$$

$$\implies x_{1} + x_{1}|x_{2}| = x_{2} + x_{2}|x_{1}|$$

$$\implies x_{1} - x_{2} = x_{2}|x_{1}| - x_{1}|x_{2}|$$
(1)
(2)

From equation (1), we see that x_1 and x_2 must be of same sign or both 0. If $x_1 \ge 0, x_2 \ge 0$, then $x_2|x_1| - x_1|x_2| = x_2x_1 - x_1x_2 = 0$. If $x_1 \le 0, x_2 \le 0$, then $x_2|x_1| - x_1|x_2| = x_2(-x_1) - x_1(-x_2) = 0$. Thus $x_2|x_1| - x_1|x_2| = 0$, so equation (2) gives $x_1 = x_2$. Therefore, f is an injection.

Now for $y \in [0, 1)$, 1 - y > 0 and hence $\frac{y}{1-y} \ge 0$; therefore,

$$f\left(\frac{y}{1-y}\right) = \frac{\frac{y}{1-y}}{1+\left|\frac{y}{1-y}\right|} = \frac{\frac{y}{1-y}}{1+\frac{y}{1-y}} = \frac{\frac{y}{1-y}}{\frac{1-y+y}{1-y}} = \frac{\frac{y}{1-y}}{\frac{1}{1-y}} = y$$

and for $y \in (-1,0)$, 1 + y > 0 and hence $\frac{y}{1+y} < 0$; therefore,

$$f\left(\frac{y}{1+y}\right) = \frac{\frac{y}{1+y}}{1+\left|\frac{y}{1+y}\right|} = \frac{\frac{y}{1+y}}{1-\frac{y}{1+y}} = \frac{\frac{y}{1+y}}{\frac{1+y-y}{1+y}} = \frac{\frac{y}{1+y}}{\frac{1}{1+y}} = y.$$

Also, $f(\infty) = 1$ and $f(-\infty) = -1$. Therefore, f is also a surjection. Hence, f is a bijection.

To show that f is non-decreasing, we need to show that $x_2 \ge x_1 \implies f(x_2) \ge f(x_1)$. We have,

$$f(x_2) - f(x_1) \ge \frac{x_2}{1 + |x_2|} - \frac{x_1}{1 + |x_1|} = \frac{(x_2 - x_1) + (x_2|x_1| - x_1|x_2|)}{(1 + |x_1|)(1 + |x_2|)}$$
(3)

If $x_2 \ge x_1 \ge 0$, then $x_2|x_1| - x_1|x_2| = x_2x_1 - x_1x_2 = 0$. If $x_2 \ge 0 \ge x_1$, then $x_2|x_1| - x_1|x_2| = x_2(-x_1) - x_1x_2 = -2x_1x_2 \ge 0$. If $0 \ge x_2 \ge x_1$, then $x_2|x_1| - x_1|x_2| = x_2(-x_1) - x_1(-x_2) = 0$. Thus equation (3) implies that $f(x_2) - f(x_1) \ge 0 \iff f(x_2) \ge f(x_1)$. Therefore, f is non-decreasing.

We check that d is a metric, as follows:

- 1. Proof that $d(x,y) = 0 \iff x = y$ $\overline{d(x,y)} = 0 \iff |f(x) - f(y)| = 0 \iff f(x) = f(y) \iff x = y$, since f is an injection.
- 2. Proof that d(x, y) = d(y, x) $\overline{d(x, y)} = |f(x) - f(y)| = |f(y) - f(x)| = d(y, x).$
- 3. Proof that $d(x,y) \le d(x,z) + d(z,y)$ $\overline{d(x,y)} = |f(x) - f(y)| \le |f(x) - f(z)| + |f(z) - f(y)| = d(x,z) + d(z,y).$

Thus, d(x, y) = |f(x) - f(y)| is a metric. Since $f : \mathbb{R}^* \to [-1, 1]$ defined by

$$f(x) = \begin{cases} \frac{x}{1+|x|}, & \text{if } x \in (-\infty, \infty) \\ -1, & \text{if } x = -\infty \\ 1, & \text{if } x = \infty \end{cases}$$

is a bijection, therefore $f^{-1}:[-1,1]\to \mathbb{R}^*$ given by

$$f^{-1}(y) = \begin{cases} \frac{y}{1-|y|}, & \text{if } y \in (-1,1) \\ -\infty, & \text{if } y = -1 \\ \infty, & \text{if } y = 1 \end{cases}$$

exists and it is clearly continuous. Since [-1,1] is compact, so its continuous image (\mathbb{R}^*, d) is compact. The open subsets of (\mathbb{R}^*, d) are union of open intervals of the form $(-\infty, a) \cup (b, c) \cup (d, \infty)$.

Solution 3:

We prove that d is a metric as follows:

- 1. $\frac{\text{Proof that } d(\{x_n\}, \{y_n\}) = 0 \iff \{x_n\} = \{y_n\}}{d(\{x_n\}, \{y_n\}) = 0 \iff \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n y_n| = 0 \iff x_n = y_n \forall n \iff \{x_n\} = \{y_n\}.$
- 2. Proof that $d(\{x_n\}, \{y_n\}) = d(\{y_n\}, \{x_n\})$ $d(\{x_n\}, \{y_n\}) = \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n - y_n| = \sum_{n=1}^{\infty} \frac{1}{2^n} |y_n - x_n| = d(\{y_n\}, \{x_n\}).$

3. Proof that $d(\{x_n\}, \{y_n\}) \le d(\{x_n\}, \{z_n\}) + d(\{z_n\}, \{y_n\})$ We have, $|x_n - y_n| \le |x_n - z_n| + |z_n - y_n|$. Therefore,

$$d(\{x_n\}, \{y_n\}) = \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n - y_n|$$

$$\leq \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n - z_n| + \sum_{n=1}^{\infty} \frac{1}{2^n} |z_n - y_n|$$

$$= d(\{x_n\}, \{z_n\}) + d(\{z_n\}, \{y_n\}).$$

Therefore, d is a metric.

Suppose $\{\overline{x_n}\} \subseteq X$ converges to $\{x_n\}_{n=1}^{\infty}$. Then $\forall \epsilon > 0$, there exists N > 0 such that $\sum_{m=1}^{\infty} \frac{1}{2^k} |x_{m,n} - x_m| < \epsilon \ \forall n \ge N$. This implies that $|x_{m,n} - x_m| < \epsilon$ for each $m \in \mathbb{N}$. Therefore, $\{x_{m,n}\}_{m=1}^{\infty}$ converges to x_m for each $m \in \mathbb{N}$.

Conversely, if $\{x_{m,n}\}_{m=1}^{\infty}$ converges to x_m for each $m \in \mathbb{N}$. Thus, for any $\epsilon > 0, \exists c_k \in \mathbb{N}$ such that $|x_{k,n} - x_k| < \frac{\epsilon}{2} \forall n > c_k$. Choose $N \in \mathbb{N}$ such that $\frac{1}{2^{N-2}} < \frac{\epsilon}{2}$. Then,

$$\sum_{k=1}^{N} \frac{1}{2^{k}} |x_{k,n} - x_{k}| < \sum_{k=1}^{\infty} \frac{1}{2^{k}} |x_{k,n} - x_{k}| < \sum_{k=1}^{\infty} \frac{1}{2^{k}} \cdot \frac{\epsilon}{2} = \frac{\epsilon}{2}$$

Therefore,

$$\sum_{k=1}^{\infty} \frac{1}{2^k} |x_{k,n} - x_k| = \sum_{k=1}^{N} \frac{1}{2^k} |x_{k,n} - x_k| + \sum_{k=N}^{\infty} \frac{1}{2^k} |x_{k,n} - x_k|$$

$$< \frac{\epsilon}{2} + \sum_{k=N}^{\infty} \frac{1}{2^{k-1}}$$

$$= \frac{\epsilon}{2} + \frac{1}{2^{N-2}}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Thus, $\{\overline{x_n}\}$ converges to $\{x_n\}_{n=1}^{\infty}$.

Consider an open ball $B_r(x_n) = \{\sum_{n=1}^{\infty} \frac{1}{2^n} |x_n - y_n| < r\}$ in X. If we take $\{x_n\}$ to be a sequence of rationals such that for some $N \in \mathbb{N}$, $x_n = 0$ for all n > N. This sequence is dense in X. Thus, the set of open balls around points of this sequence, i.e., $\{B_r(\{x_n\})\}$ form a countable basis of X.

Solution 4:

Given that X and Y are metric spaces and Y is complete. $S \subseteq X$ is dense and $f: S \to Y$ is uniformly continuous. Define the extension $\tilde{f}: X \to Y$ by $\tilde{f}|_S = f$ and for $x \in X \setminus S$, $\tilde{f}(x) = \lim f(s_n)$ where $\{s_n\}$ is any sequence of points in S with $s_n \to x$ (such a sequence exists as S is dense in X).

Claim: $\{f(s_n)\}$ is Cauchy. *Proof:* Let $\epsilon > 0$. Since f is uniformly continuous, so $\exists \delta > 0$ such that

$$d_X(a,b) < \delta \implies d_Y(f(a),f(b)) < \epsilon.$$

Now since $s_n \to x$, so $\{s_n\}$ is Cauchy and hence $\exists N \in \mathbb{N}$ such that $d_X(s_n, s_m) < \delta \forall n, m \geq N$. By uniform continuity, this implies $d_Y(f(s_n), f(s_m)) < \epsilon \forall n, m \geq N$. Therefore, $\{f(s_n)\}$ is Cauchy.

Since Y is complete, so $\{f(s_n)\}$ converges. Now we prove that \tilde{f} is well-defined, i.e., if $s_n \to x$ and $s'_n \to x$, then $\lim f(s_n) = \lim f(s'_n)$. Let $\{s''_n\} = \{s_1, s'_1, s_2, s'_2, \ldots\}$. Let $\epsilon > 0$ be given. Then $\exists N_1, N_2 > 0$ such that $d_X(s_n, x) < \epsilon \forall n \ge N_1$ and $d_X(s'_n, x) < \epsilon \forall n \ge N_2$. Let $N = \max\{N_1, N_2\}$. Then for $n \ge 2N$, $\lceil \frac{n}{2} \rceil \ge N = \max\{N_1, N_2\}$, so if n is even, then $d_X(s''_n, x) = d_X(s'_n, x) < \epsilon$ and if n is odd, then $d_X(s''_n, x) = d_X(s_{n+1}, x) < \epsilon$. Thus, $s''_n \to x$. Thus, $\lim f(s''_n)$ exists and since $\{f(s_n)\}$ and $\{f(s'_n)\}$ are subsequences of $\{f(s''_n)\}$, so $\lim f(s_n) = \lim f(s''_n) = \lim f(s'_n)$.

Now we prove that \tilde{f} is continuous on $X \setminus S$. (\tilde{f} is continuous on S as $\tilde{f}|_S = f$ and $f: S \to Y$ is uniformly continuous, hence continuous.) Let $\epsilon > 0$. Since f is uniformly continuous, $\exists \delta > 0$ such that

$$d_X(a,b) < \delta \implies d_Y(f(a),f(b)) < \frac{\epsilon}{3}.$$

Let $x, y \in X \setminus S$ with $d_X(x, y) < \frac{\delta}{3}$. Since S is dense in X, \exists sequences $\{x_n\}$ and $\{y_n\}$ in S with $x_n \to x$ and $y_n \to y$. Thus, $\exists N_1 \in \mathbb{N}$ such that $d_X(x_n, x) < \frac{\delta}{3}$ and $d_X(y_n, y) < \frac{\delta}{3}$ $\forall n \geq N_1$. Thus, for $n \geq N_1$,

$$d_X(x_n, y_n) \le d_X(x_n, x) + d_X(x, y) + d_X(y, y_n) < \frac{\delta}{3} + \frac{\delta}{3} + \frac{\delta}{3} = \delta.$$

Therefore, by uniform continuity of f, $d_Y(f(x_n), f(y_n)) < \frac{\epsilon}{3}$. Also, since $f(x_n) \to \tilde{f}(x)$ and $f(y_n) \to \tilde{f}(y)$, so $\exists N_2 \in \mathbb{N}$ such that $d_Y(f(x_n), \tilde{f}(x)) < \frac{\epsilon}{3}$ and $d_Y(f(y_n), \tilde{f}(y)) < \frac{\epsilon}{3}$ $\forall n \ge N_2$. Since $\tilde{f}|_S = f$ and $\{x_n\}, \{y_n\}$ are sequences in S, so $\tilde{f}(x_n) = f(x_n)$ and $\tilde{f}(y_n) = f(y_n)$. Thus, for $n \ge \max\{N_1, N_2\}$,

$$d_{Y}(\tilde{f}(x), \tilde{f}(y)) \le d_{Y}(\tilde{f}(x), \tilde{f}(x_{n})) + d_{Y}(\tilde{f}(x_{n}), \tilde{f}(y_{n})) + d_{Y}(\tilde{f}(y_{n}), \tilde{f}(y)) < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Therefore, f is continuous on X.

Now we just have to prove that \tilde{f} is unique. Let \tilde{f}' be another continuous extension of f on X. Then for $x \in X \setminus S$, let $\{s_n\} \subseteq S$ such that $s_n \to x$. Then since $\tilde{f}'|_S = f$, so $\tilde{f}'(x) = \lim \tilde{f}'(s_n) = \lim f(x_n) = \tilde{f}(x)$.

Thus,
$$f$$
 is unique.

Solution 5:

Given, $A, B \subset \mathbb{R}^n$. Define $A + B := \{a + b \mid a \in A, b \in B\}$.

We shall prove that if A and B are open, then A + B is open. Let $c \in A + B$, so c = a + b for some $a \in A$ and $b \in B$. Since A and B are open, so $\exists \epsilon_1, \epsilon_2 > 0$ such that $B_{\epsilon_1}(a) \subseteq A$ and $B_{\epsilon_2}(b) \subseteq B$. Let $\epsilon = \min\{\epsilon_1, \epsilon_2\}$. Now let $x \in B_{\epsilon}(c)$ be arbitrary. Then,

$$||c-x|| = ||(a+b)-x|| < \epsilon \implies ||a-(x-b)|| < \epsilon \le \epsilon_1.$$

Therefore, $x - b \in A$ and hence, $x = (x - b) + b \in A + B$. Thus, $B_{\epsilon}(c) \subseteq A + B$ and hence, A + B is open.

If A and B are closed, then A + B is not necessarily closed. Consider $A = \mathbb{N}$ and $B = \left\{-n + \frac{1}{n^2} \mid n \in \mathbb{N}\right\}$. Then $A + B = \left\{\frac{1}{n^2} \mid n \in \mathbb{N}\right\}$. The sequence $\left\{\frac{1}{n^2}\right\}$ converges to 0, so 0 is a limit point of A + B. But $0 \notin A + B$. Thus, A + B does not contain all its limit points and hence A + B is not closed.

Solution 6:

We show that d is a metric as follows:

- 1. Proof that $d(m,n) = 0 \iff m = n$ $\overline{d(m,n) = 0 \iff \left|\frac{1}{m} - \frac{1}{n}\right| = 0 \iff \frac{1}{m} = \frac{1}{n} \iff m = n.$
- 2. Proof that d(m,n) = d(n,m) $d(m,n) = \left|\frac{1}{m} - \frac{1}{n}\right| = \left|\frac{1}{n} - \frac{1}{m}\right| = d(n,m).$
- 3. Proof that $d(m,n) \le d(m,k) + d(k,n)$ $\overline{d(m,n)} = \left|\frac{1}{m} - \frac{1}{n}\right| \le \left|\frac{1}{m} - \frac{1}{k}\right| + \left|\frac{1}{k} - \frac{1}{n}\right| = d(m,k) + d(k,n).$

Therefore, d is a metric.

Consider $S \subseteq \mathbb{N}^* = \mathbb{N} \cup \{\infty\}.$

Claim: If $\infty \notin S$, then S is open. *Proof:* Let $x \in S$. Then for n > x,

$$d(x,n) = \left|\frac{1}{x} - \frac{1}{n}\right| = \frac{1}{x} - \frac{1}{n} \ge \frac{1}{x} - \frac{1}{x+1}$$

and for n < x,

$$d(x,n) = \left|\frac{1}{x} - \frac{1}{n}\right| = \frac{1}{n} - \frac{1}{x} \le \frac{1}{x-1} - \frac{1}{x}.$$

Therefore, for $r < \frac{1}{x-1} - \frac{1}{x}$, $B_r(x) = \phi \subseteq S$, and hence S is open.

If $\infty \in S$, then if ∞ is an interior point of S, \exists an open ball $B_r(\infty) \subseteq S$ for some r > 0. Now for any $N \in B_r(\infty)$,

$$d(N,\infty) = \left|\frac{1}{N} - \frac{1}{\infty}\right| < r \implies \frac{1}{N} < r \implies \frac{1}{n} < r \forall n \ge N.$$

Thus, for ∞ to be an interior point of S, $\exists N \in \mathbb{N}$ such that $n \geq N \implies n \in S$. Thus, open sets of \mathbb{N}^* are (all sets not containing ∞) \cup (sets that contain all $n \geq N$ for some $N \in \mathbb{N}^*$).

N, with respect to the restricted metric is not complete. Consider the sequence $\{x_n\} = \{1, 2, ...\}$ given by $x_n = n$. Now for a given $\epsilon > 0$, let $N > \frac{2}{\epsilon}$. Then for n, m > N,

$$d(x_n, x_m) = d(n, m) = \left|\frac{1}{n} - \frac{1}{m}\right| < \frac{1}{m} + \frac{1}{n} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus, $\{x_n\}$ is Cauchy. But $\forall k \in \mathbb{N}$, $d(x_n, k) \to \frac{1}{k}$ as $n \to \infty$. Therefore, the sequence $\{x_n\} = n$ is Cauchy but not convergent. Hence, (\mathbb{N}, d) is not complete.

Suppose $f : \mathbb{N}^* \to \mathbb{N}^*$ is continuous. Then for every open set U in \mathbb{N}^* , $f^{-1}(U)$ is open in \mathbb{N}^* . Let $f(\infty) = x$. Then for all open sets $S \subseteq \mathbb{N}^*$ not containing x, $f^{-1}(S)$ does not contain ∞ and hence is open. If $f^{-1}(x)$ contains ∞ , then for it to be open, it should contain all $n \ge N$ for some $N \in \mathbb{N}^*$; thus $f(n) = x \forall n \ge N$. Therefore, f is continuous if and only if $\exists N \in \mathbb{N}$ such that $f(n) = f(\infty) \forall n \ge N$.

Solution 7:

Given $g \in C[0,1]$. The map $I : C[0,1] \to \mathbb{R}$ is defined by

$$I(f) = \int_0^1 f(x)g(x)dx.$$

We shall prove that I is in fact uniformly continuous and hence continuous. Let $\epsilon > 0$ be given. Let $\int_0^1 |g(x)| dx = k$. For $f_1, f_2 \in C[0, 1]$, if $||f_1 - f_2||_{\infty} < \frac{\epsilon}{k}$, then we can choose $\delta = \frac{\epsilon}{k}$ such that the following holds:

$$|f_1(x) - f_2(x)| < \delta \implies |I(f_1) - I(f_2)| < \epsilon.$$

We prove this as follows:

$$|I(f_1) - I(f_2)| = \left| \int_0^1 f_1(x)g(x)dx - \int_0^1 f_2(x)g(x)dx \right| dx$$

= $\left| \int_0^1 (f_1(x) - f_2(x))g(x) \right| dx$
 $\leq \int_0^1 |(f_1(x) - f_2(x))g(x)| dx$
= $\int_0^1 |f_1(x) - f_2(x)| \cdot |g(x)| dx$
 $< \int_0^1 \frac{\epsilon}{k} \cdot k dx = \epsilon.$

Thus, I is uniformly continuous and hence continuous.

Solution 8:

Given $g \in C[0,1]$. Let $I_x(f) = \int_0^x f(t)g(t)dt$. We need to show that the set $S = \{f \in C[0,1] \mid I_x(f) \leq x\}$ is closed with respect to the $|| \cdot ||_{\infty}$ norm. We want to show that S is closed. It suffices to prove that $\overline{S} = C[0,1] \setminus S$ is open in C[0,1]. Consider a function F in \overline{S} . Then, $\exists y \in [0,1]$ such that $I_y(F) > y$. Let $\int_0^y F(t)dt = k$. Choose $\epsilon < \frac{1}{k}(I_y(F) - y)$. Then if $||F - F'||_{\infty} < \epsilon$, i.e., $F'(x) > F(x) - \epsilon \forall x \in [0,1]$, we have,

$$I_y(F') > \int_0^y (F(t) - \epsilon)g(t)dt$$

= $I_y(F) - \epsilon \int_0^y g(t)dt$
> $I_y(F) - \frac{1}{k}(I_y(F) - y)k$
= $I_y(F) - I_y(F) + y$
= $y.$

Thus, $I_y(F') = \int_0^y F'(t)g(t)dt > y$ and hence, $B_{\epsilon}(F(x)) \subseteq \overline{S}$. Therefore, \overline{S} is open in C[0,1] and hence S is closed in [0,1].

Solution 9:

Since \overline{A} is closed, so \overline{A}^c is open. Therefore,

$$A \subseteq \overline{A} \implies A^c \supseteq (\overline{A})^c \implies \operatorname{Int}(A^c) \supseteq (\overline{A})^c.$$

Also, since $Int(A^c)$ is open, so $(Int(A^c))^c$ is closed. Therefore,

 $\operatorname{Int}(A^c) \subseteq A^c \implies (\operatorname{Int}(A^c))^c \supseteq A \implies (\operatorname{Int}(A^c))^c \supseteq \overline{A} \implies \operatorname{Int}(A^c) \subseteq (\overline{A})^c.$

Therefore, $\operatorname{Int}(A^c) = (\overline{A})^c$.

Solution 10:

(i) f is continuously differentiable on \mathbb{R} and $f_n(x) = n\left(f(x+\frac{1}{n}) - f(x)\right)$. Now, f is also continuous and since [a, b] is compact, so f is also uniformly continuous on [a, b]. Thus, given any $\epsilon > 0$, $\exists \delta > 0$ such that

$$|x - y| < \delta \implies |f'(x) - f'(y)| < \epsilon.$$
(4)

Let $\epsilon > 0$ be fixed, by Mean Value theorem,

$$f_n(x) = f'(c_x)$$
 for some $c_x \in \left[x, x + \frac{1}{n}\right]$. (5)

For $n > \frac{1}{\delta}$, $|x - c_x| < \frac{1}{n} < \delta$. Thus, substituting $y = c_x$ in equation (4), we have $|f'(x) - f'(c_x)| = |f(c_x) - f'(x)| < \epsilon$. Now, using equation (5), we have $|f_n(x) - f'(x)| < \epsilon \ \forall x \in [a, b]$. Therefore, we have showed that for any given $\epsilon > 0$, $\exists N = \frac{1}{\delta} > 0$ such that $|f_n(x) - f'(x)| < \epsilon \ \forall n \ge N$. Thus, f_n uniformly converges to f' on any finite interval [a, b].

(ii) $A_n \in M_{n \times m}$ is a function from \mathbb{R}^m to \mathbb{R}^n . Given, $A_n \to A$ pointwise. Therefore, $A_n e_i \to A e_i$, i.e., the *i*th column of A_n converges to the *i*th column of $A \forall i$. Thus, given any $\epsilon > 0$, $\exists N > 0$ such that $||(A_n - A)e_i|| < \epsilon \forall n \ge N$ and $\forall i$. Therefore, $A \in M_{n \times m}$. Consider a compact subset $K \subseteq \mathbb{R}^m$ and a column vector $v = \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix} \in K \subseteq \mathbb{R}^m$. Then, $||(A_n - A)v|| = \left\| \sum_{i=1}^m v_i (A_n - A)e_i \right\| \le \sum_{i=1}^m v_i ||(A_n - A)e_i|| < \left(\sum_{i=1}^m v_i\right)\epsilon$

Consider the mapping $f : K \to \mathbb{R}^m$ such that $v = \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix} \mapsto \sum_{i=1}^m v_i$. Clearly,

f is continuous and since K is compact, it attains a maximum on K. Let the maximum value attained be M. Therefore, $||A_n - A||_{\infty} < M\epsilon \ \forall \ n \ge N$. Also, for each i, $||(A_n - A)e_i|| < \frac{\epsilon}{M}$. Thus, given $\epsilon > 0$, we can choose $\delta = \frac{\epsilon}{M}$ such that $||A_n - A||_{\infty} < M \cdot \frac{\epsilon}{M} = \epsilon$. Therefore, $A_n \to A$ uniformly on compact subsets of \mathbb{R}^m .

(iii) f is a continuous function on [0, 1]. The function f_n on [0, 1] is defined by

$$f_n(x) = f\left(\frac{k-1}{n}\right), \text{ if } \frac{k-1}{n} \le x < \frac{k}{n}, \, k = 1, 2, \dots, n$$

and $f_n(1) = f(1)$. Since [0, 1] is compact, so f is also uniformly continuous on [0, 1]. Therefore, for any $\epsilon > 0, \exists \delta > 0$ such that

$$|x-y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Choose n such that $n > \frac{1}{\delta}$. If $\frac{k-1}{n} \le x < \frac{k}{n}$, then by the choice of δ , we have $\left|x - \frac{k-1}{n}\right| < \frac{1}{n} < \delta$. By uniform continuity, we have

$$\left|x - \frac{k-1}{n}\right| < \delta \implies \left|f(x) - f\left(\frac{k-1}{n}\right)\right| < \epsilon \implies |f(x) - f_n(x)| < \epsilon$$

 $\forall x \in [0,1)$ Also, for x = 1, $f_n(1) = f(1)$ and hence $|f_n(1) - f(1)| = 0 < \epsilon$. Therefore, given $\epsilon > 0$, $\exists N = \frac{1}{\delta} > 0$ such that $|f_n(x) - f(x)| < \epsilon \ \forall n > N$ and $x \in [0,1]$. Therefore, $f_n \to f$ as $n \to \infty$ uniformly on [0,1].