Analysis II Assignment 1,2

Nirjhar Nath nirjhar@cmi.ac.in BMC202239

Solution 1:

Let $d: X \times X \to [0, \infty)$ be a pseudo metric. Define $x \sim y$ if $d(x, y) = 0$. Let $\tilde{X} = X/\sim$ and define $\tilde{d}: \tilde{X} \times \tilde{X} \to [0, \infty)$ by $\tilde{d}([x], [y]) = d(x, y)$. We check the properties of metric.

- 1. Proof that $\tilde{d}([x], [y]) = 0 \iff [x] = [y]$ If $\tilde{d}([x], [y]) = 0$, then $d(x, y) = 0$, i.e., $x \sim y$. Also, if $[x] = [y]$, then $x \sim y$, which $\text{implies } d(x, y) = 0 = \tilde{d}([x], [y]).$
- 2. <u>Proof that $\tilde{d}([x], [y]) = \tilde{d}([y], [x])$ </u> Since *d* is a pseudo metric, so $\tilde{d}([x], [y]) = d(x, y) = d(y, x) = \tilde{d}([y], [x]).$
- 3. Proof that $\tilde{d}([x], [y]) \leq \tilde{d}([x], [z]) \tilde{d}([z], [y])$ $\overline{\text{Similar to the above, } d([x], [y]) = d(x, y) \leq d(x, z) + d(z, y) = d([x], [z]) d([z], [y]).}$

Therefore, \tilde{d} is a well-defined metric.

Let $x \in A$. Since A is open, there exists an open ball $B_r(x) \subseteq A$ for some $r > 0$. Therefore, if $y \in [x]$, then $d(x, y) = 0 \lt r \implies y \in A$, which implies $[x] \subseteq A$. Then, $A = \bigcup_{x \in A}[x]$ is a union of equivalence classes.

Take any $[x] \in \pi(A)$ then $x \in A$ and there exists an open ball $B_r(x) \subseteq A$ for some $r > 0$. Now if $[y] \in B_r([x])$ in \tilde{X} , then $\tilde{d}([x], [y]) < r$. Therefore, $d(x, y) < r \implies y \in B_r([x])$ $B_r(x) \subset A$. Hence, $\pi(A)$ is open in \tilde{X} .

Solution 2:

 \mathbb{R}^* is the extended real number system $[-\infty, \infty]$. Define $f : \mathbb{R}^* \to [-1, 1]$ by

$$
f(x) = \frac{x}{1+|x|}
$$
 $\forall x \in (-\infty, \infty), f(-\infty) = -1, f(\infty) = 1.$

To show that *f* is an injection, we need to show that $f(x_1) = f(x_2) \implies x_1 = x_2$. We have,

$$
f(x_1) = f(x_2)
$$

\n
$$
\implies \frac{x_1}{1+|x_1|} = \frac{x_2}{1+|x_2|}
$$

\n
$$
\implies x_1 + x_1|x_2| = x_2 + x_2|x_1|
$$

\n
$$
\implies x_1 - x_2 = x_2|x_1| - x_1|x_2|
$$
\n(2)

From equation [\(1\)](#page-1-0), we see that x_1 and x_2 must be of same sign or both 0. If $x_1 \ge 0, x_2 \ge 0$, then $x_2|x_1| - x_1|x_2| = x_2x_1 - x_1x_2 = 0$. If $x_1 \leq 0, x_2 \leq 0$, then $x_2|x_1| - x_1|x_2| = 0$. $x_2(-x_1) - x_1(-x_2) = 0$. Thus $x_2|x_1| - x_1|x_2| = 0$, so equation [\(2\)](#page-1-1) gives $x_1 = x_2$. Therefore, *f* is an injection.

Now for $y \in [0, 1)$, $1 - y > 0$ and hence $\frac{y}{1-y} \geq 0$; therefore,

$$
f\left(\frac{y}{1-y}\right) = \frac{\frac{y}{1-y}}{1 + \left|\frac{y}{1-y}\right|} = \frac{\frac{y}{1-y}}{1 + \frac{y}{1-y}} = \frac{\frac{y}{1-y}}{\frac{1-y+y}{1-y}} = \frac{\frac{y}{1-y}}{\frac{1}{1-y}} = y
$$

and for $y \in (-1,0)$, $1 + y > 0$ and hence $\frac{y}{1+y} < 0$; therefore,

$$
f\left(\frac{y}{1+y}\right) = \frac{\frac{y}{1+y}}{1+\left|\frac{y}{1+y}\right|} = \frac{\frac{y}{1+y}}{1-\frac{y}{1+y}} = \frac{\frac{y}{1+y}}{\frac{1+y-y}{1+y}} = \frac{\frac{y}{1+y}}{\frac{1}{1+y}} = y.
$$

Also, $f(\infty) = 1$ and $f(-\infty) = -1$. Therefore, f is also a surjection. Hence, f is a bijection.

To show that *f* is non-decreasing, we need to show that $x_2 \ge x_1 \implies f(x_2) \ge f(x_1)$. We have,

$$
f(x_2) - f(x_1) \ge \frac{x_2}{1 + |x_2|} - \frac{x_1}{1 + |x_1|} = \frac{(x_2 - x_1) + (x_2|x_1| - x_1|x_2|)}{(1 + |x_1|)(1 + |x_2|)}
$$
(3)

If $x_2 \geq x_1 \geq 0$, then $x_2|x_1| - x_1|x_2| = x_2x_1 - x_1x_2 = 0$. If $x_2 \geq 0 \geq x_1$, then $x_2|x_1| - x_1x_2 = 0$. $x_1|x_2| = x_2(-x_1) - x_1x_2 = -2x_1x_2 \ge 0$. If $0 \ge x_2 \ge x_1$, then $x_2|x_1| - x_1|x_2| = x_2(-x_1) - x_1x_2$ $x_1(-x_2) = 0$. Thus equation [\(3\)](#page-2-0) implies that $f(x_2) - f(x_1) \geq 0 \iff f(x_2) \geq f(x_1)$. Therefore, *f* is non-decreasing.

We check that *d* is a metric, as follows:

- 1. Proof that $d(x, y) = 0 \Longleftrightarrow x = y$ $d(x, y) = 0 \iff |f(x) - f(y)| = 0 \iff f(x) = f(y) \iff x = y$, since *f* is an injection.
- 2. Proof that $d(x, y) = d(y, x)$ $d(x, y) = |f(x) - f(y)| = |f(y) - f(x)| = d(y, x).$
- 3. Proof that $d(x, y) \leq d(x, z) + d(z, y)$ $d(x, y) = |f(x) - f(y)| \leq |f(x) - f(z)| + |f(z) - f(y)| = d(x, z) + d(z, y).$

Thus, $d(x, y) = |f(x) - f(y)|$ is a metric. Since $f : \mathbb{R}^* \to [-1, 1]$ defined by

$$
f(x) = \begin{cases} \frac{x}{1+|x|}, & \text{if } x \in (-\infty, \infty) \\ -1, & \text{if } x = -\infty \\ 1, & \text{if } x = \infty \end{cases}
$$

is a bijection, therefore $f^{-1}: [-1, 1] \to \mathbb{R}^*$ given by

$$
f^{-1}(y) = \begin{cases} \frac{y}{1-|y|}, & \text{if } y \in (-1,1) \\ -\infty, & \text{if } y = -1 \\ \infty, & \text{if } y = 1 \end{cases}
$$

exists and it is clearly continuous. Since $[-1, 1]$ is compact, so its continuous image (R ∗ *, d*) is compact. The open subsets of (R ∗ *, d*) are union of open intervals of the form $(-\infty, a) \cup (b, c) \cup (d, \infty).$

Solution 3:

We prove that *d* is a metric as follows:

- 1. Proof that $d({x_n}, {y_n}) = 0 \iff {x_n} = {y_n}$ $\overline{d(\lbrace x_n \rbrace, \lbrace y_n \rbrace)} = 0 \iff \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n - y_n| = 0 \iff x_n = y_n \forall n \iff \lbrace x_n \rbrace = \lbrace y_n \rbrace.$
- 2. Proof that $d({x_n}, {y_n}) = d({y_n}, {x_n})$ $d({x_n}, {y_n}) = \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n - y_n| = \sum_{n=1}^{\infty} \frac{1}{2^n} |y_n - x_n| = d({y_n}, {x_n}).$

3. Proof that $d({x_n}, {y_n}) \le d({x_n}, {z_n}) + d({z_n}, {y_n})$ We have, $|x_n - y_n|$ ≤ $|x_n - z_n| + |z_n - y_n|$. Therefore,

$$
d({xn}, {yn}) = \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n - y_n|
$$

\n
$$
\leq \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n - z_n| + \sum_{n=1}^{\infty} \frac{1}{2^n} |z_n - y_n|
$$

\n
$$
= d({xn}, {zn}) + d({zn}, {yn}).
$$

Therefore, *d* is a metric.

Suppose $\{\overline{x_n}\}\subseteq X$ converges to $\{x_n\}_{n=1}^{\infty}$. Then $\forall \epsilon > 0$, there exists $N > 0$ such that $\sum_{m=1}^{\infty} \frac{1}{2^{k}}$ $\frac{1}{2^k}|x_{m,n}-x_m| < \epsilon \ \forall \ n \geq N$. This implies that $|x_{m,n}-x_m| < \epsilon$ for each $m \in \mathbb{N}$. Therefore, ${x_{m,n}}_{m=1}^{\infty}$ converges to x_m for each $m \in \mathbb{N}$.

Conversely, if ${x_{m,n}}_{m=1}^{\infty}$ converges to x_m for each $m \in \mathbb{N}$. Thus, for any $\epsilon > 0$, \exists $c_k \in \mathbb{N}$ such that $|x_{k,n} - x_k| < \frac{\epsilon}{2}$ $\frac{e}{2}$ ∀ *n* > *c_k*. Choose *N* ∈ N such that $\frac{1}{2^{N-2}} < \frac{e}{2}$ $\frac{\epsilon}{2}$. Then,

$$
\sum_{k=1}^{N} \frac{1}{2^{k}} |x_{k,n} - x_{k}| < \sum_{k=1}^{\infty} \frac{1}{2^{k}} |x_{k,n} - x_{k}| < \sum_{k=1}^{\infty} \frac{1}{2^{k}} \cdot \frac{\epsilon}{2} = \frac{\epsilon}{2}.
$$

Therefore,

$$
\sum_{k=1}^{\infty} \frac{1}{2^k} |x_{k,n} - x_k| = \sum_{k=1}^{N} \frac{1}{2^k} |x_{k,n} - x_k| + \sum_{k=N}^{\infty} \frac{1}{2^k} |x_{k,n} - x_k| \n< \frac{\epsilon}{2} + \sum_{k=N}^{\infty} \frac{1}{2^{k-1}} \n< \frac{\epsilon}{2} + \frac{1}{2^{N-2}} \n< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon
$$

Thus, $\{\overline{x_n}\}$ converges to $\{x_n\}_{n=1}^{\infty}$.

Consider an open ball $B_r(x_n) = \left\{ \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n - y_n| < r \right\}$ in *X*. If we take $\{x_n\}$ to be a sequence of rationals such that for some $N \in \mathbb{N}$, $x_n = 0$ for all $n > N$. This sequence is dense in *X*. Thus, the set of open balls around points of this sequence, i.e., ${B_r({x_n})}$ form a countable basis of X .

Solution 4:

Given that *X* and *Y* are metric spaces and *Y* is complete. $S \subseteq X$ is dense and $f : S \to Y$ is uniformly continuous. Define the extension $\tilde{f}: X \to Y$ by $\tilde{f}|_S = f$ and for $x \in X \setminus S$, $\tilde{f}(x) = \lim f(s_n)$ where $\{s_n\}$ is any sequence of points in *S* with $s_n \to x$ (such a sequence exists as *S* is dense in *X*).

Claim: $\{f(s_n)\}\$ is Cauchy. *Proof:* Let $\epsilon > 0$. Since f is uniformly continuous, so $\exists \delta > 0$ such that

$$
d_X(a,b) < \delta \implies d_Y(f(a), f(b)) < \epsilon.
$$

Now since $s_n \to x$, so $\{s_n\}$ is Cauchy and hence $\exists N \in \mathbb{N}$ such that $d_X(s_n, s_m) < \delta \ \forall$ $n, m \geq N$. By uniform continuity, this implies $d_Y(f(s_n), f(s_m)) < \epsilon \ \forall \ n, m \geq N$. Therefore, $\{f(s_n)\}\$ is Cauchy.

Since *Y* is complete, so $\{f(s_n)\}\$ converges. Now we prove that \tilde{f} is well-defined, i.e., if $s_n \to x$ and $s'_n \to x$, then $\lim f(s_n) = \lim f(s'_n)$. Let $\{s''_n\} = \{s_1, s'_1, s_2, s'_2, \dots\}$. Let ϵ > 0 be given. Then ∃ $N_1, N_2 > 0$ such that $d_X(s_n, x) < \epsilon \ \forall n \geq N_1$ and $d_X(s'_n, x) < \epsilon$ $\forall n \geq N_2$. Let $N = \max\{N_1, N_2\}$. Then for $n \geq 2N$, $\lceil \frac{n}{2} \rceil$ $\left[\frac{n}{2} \right] \ge N = \max\{N_1, N_2\}$, so if *n* is even, then $d_X(s''_n, x) = d_X(s''_{\frac{n}{2}}, x) < \epsilon$ and if n is odd, then $d_X(s''_n, x) = d_X(s_{\frac{n+1}{2}}, x) < \epsilon$. Thus, $s''_n \to x$. Thus, $\lim_{n \to \infty} f(s''_n)$ exists and since $\{f(s_n)\}\$ and $\{f(s'_n)\}\$ are subsequences of ${f(s''_n)}$, so $\lim f(s_n) = \lim_{n \to \infty} f(s''_n) = \lim_{n \to \infty} f(s'_n)$.

Now we prove that \tilde{f} is continuous on $\tilde{X} \setminus S$. (\tilde{f} is continuous on S as $\tilde{f}|_S = f$ and $f: S \to Y$ is uniformly continuous, hence continuous.) Let $\epsilon > 0$. Since f is uniformly continuous, $\exists \delta > 0$ such that

$$
d_X(a,b) < \delta \implies d_Y(f(a), f(b)) < \frac{\epsilon}{3}.
$$

Let $x, y \in X \setminus S$ with $d_X(x, y) < \frac{\delta}{3}$ $\frac{3}{3}$. Since *S* is dense in *X*, \exists sequences $\{x_n\}$ and $\{y_n\}$ in *S* with $x_n \to x$ and $y_n \to y$. Thus, $\exists N_1 \in \mathbb{N}$ such that $d_X(x_n, x) < \frac{\delta}{3}$ $\frac{\delta}{3}$ and $d_X(y_n, y) < \frac{\delta}{3}$ 3 $∀ n ≥ N_1$. Thus, for $n ≥ N_1$,

$$
d_X(x_n, y_n) \le d_X(x_n, x) + d_X(x, y) + d_X(y, y_n) < \frac{\delta}{3} + \frac{\delta}{3} + \frac{\delta}{3} = \delta.
$$

Therefore, by uniform continuity of f , $d_Y(f(x_n), f(y_n)) < \frac{\epsilon}{3}$ $\frac{\epsilon}{3}$. Also, since $f(x_n) \to \tilde{f}(x)$ and $f(y_n) \to \tilde{f}(y)$, so $\exists N_2 \in \mathbb{N}$ such that $d_Y(f(x_n), \tilde{f}(x)) \leq \frac{\epsilon}{3}$ $\frac{\epsilon}{3}$ and $d_Y(f(y_n), \tilde{f}(y)) < \frac{\epsilon}{3}$ 3 $\forall n \geq N_2$. Since $\tilde{f}|_S = f$ and $\{x_n\}$, $\{y_n\}$ are sequences in *S*, so $\tilde{f}(x_n) = f(x_n)$ and $f(y_n) = f(y_n)$. Thus, for $n \ge \max\{N_1, N_2\}$,

$$
d_Y(\tilde{f}(x), \tilde{f}(y)) \le d_Y(\tilde{f}(x), \tilde{f}(x_n)) + d_Y(\tilde{f}(x_n), \tilde{f}(y_n)) + d_Y(\tilde{f}(y_n), \tilde{f}(y)) < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.
$$

Therefore, f is continuous on X.

Now we just have to prove that \tilde{f} is unique. Let \tilde{f}' be another continuous extension of *f* on *X*. Then for $x \in X \setminus S$, let $\{s_n\} \subseteq S$ such that $s_n \to x$. Then since $\tilde{f}'|_S = f$, so $\tilde{f}'(x) = \lim \tilde{f}'(s_n) = \lim f(x_n) = \tilde{f}(x)$.

Thus, \tilde{f} is unique.

Solution 5:

Given, $A, B \subset \mathbb{R}^n$. Define $A + B := \{a + b \mid a \in A, b \in B\}.$

We shall prove that if *A* and *B* are open, then $A + B$ is open. Let $c \in A + B$, so *c* = *a* + *b* for some *a* ∈ *A* and *b* ∈ *B*. Since *A* and *B* are open, so \exists $\epsilon_1, \epsilon_2 > 0$ such that $B_{\epsilon_1}(a) \subseteq A$ and $B_{\epsilon_2}(b) \subseteq B$. Let $\epsilon = \min{\{\epsilon_1, \epsilon_2\}}$. Now let $x \in B_{\epsilon}(c)$ be arbitrary. Then,

$$
||c - x|| = ||(a + b) - x|| < \epsilon \implies ||a - (x - b)|| < \epsilon \leq \epsilon_1.
$$

Therefore, $x - b \in A$ and hence, $x = (x - b) + b \in A + B$. Thus, $B_{\epsilon}(c) \subseteq A + B$ and hence, $A + B$ is open.

If *A* and *B* are closed, then $A + B$ is not necessarily closed. Consider $A = \mathbb{N}$ and $B = \{-n + \frac{1}{n^2}\}$ $\frac{1}{n^2} \mid n \in \mathbb{N}$. Then $A + B = \{\frac{1}{n^2}\}$ $\frac{1}{n^2}$ | $n \in \mathbb{N}$. The sequence $\{\frac{1}{n^2}\}$ converges to 0, so 0 is a limit point of $A + B$. But $0 \notin A + B$. Thus, $A + B$ does not contain all its limit points and hence $A + B$ is not closed.

Solution 6:

We show that *d* is a metric as follows:

- 1. Proof that $d(m, n) = 0 \iff m = n$ $d(m, n) = 0 \iff$ $\frac{1}{m} - \frac{1}{n}$ *n* $= 0 \iff \frac{1}{m} = \frac{1}{n} \iff m = n.$
- 2. Proof that $d(m, n) = d(n, m)$ $d(m, n) = |$ $\frac{1}{m} - \frac{1}{n}$ *n* $\vert = \vert$ $\frac{1}{n} - \frac{1}{n}$ *m* $\vert = d(n, m).$
- 3. Proof that $d(m, n) \leq d(m, k) + d(k, n)$ $d(m, n) = |$ $\frac{1}{m} - \frac{1}{n}$ *n* $|\leq|$ $\frac{1}{m} - \frac{1}{k}$ *k* $|+|$ $\frac{1}{k} - \frac{1}{n}$ *n* $= d(m, k) + d(k, n).$

Therefore, *d* is a metric.

Consider $S \subseteq \mathbb{N}^* = \mathbb{N} \cup \{\infty\}.$

Claim: If $\infty \notin S$, then *S* is open. *Proof:* Let $x \in S$. Then for $n > x$,

$$
d(x, n) = \left| \frac{1}{x} - \frac{1}{n} \right| = \frac{1}{x} - \frac{1}{n} \ge \frac{1}{x} - \frac{1}{x+1}
$$

and for $n < x$,

$$
d(x,n) = \left|\frac{1}{x} - \frac{1}{n}\right| = \frac{1}{n} - \frac{1}{x} \le \frac{1}{x-1} - \frac{1}{x}.
$$

Therefore, for $r < \frac{1}{x-1} - \frac{1}{x}$ $\frac{1}{x}$, $B_r(x) = \phi \subseteq S$, and hence *S* is open.

If $\infty \in S$, then if ∞ is an interior point of *S*, \exists an open ball $B_r(\infty) \subseteq S$ for some $r > 0$. Now for any $N \in B_r(\infty)$,

$$
d(N,\infty) = \left|\frac{1}{N} - \frac{1}{\infty}\right| < r \implies \frac{1}{N} < r \implies \frac{1}{n} < r \,\forall \, n \ge N.
$$

Thus, for ∞ to be an interior point of *S*, $\exists N \in \mathbb{N}$ such that $n \geq N \implies n \in S$. Thus, open sets of \mathbb{N}^* are (all sets not containing ∞) \cup (sets that contain all $n \geq N$ for some $N \in \mathbb{N}^*$).

N, with respect to the restricted metric is not complete. Consider the sequence ${x_n}$ = $\{1, 2, \ldots\}$ given by $x_n = n$. Now for a given $\epsilon > 0$, let $N > \frac{2}{\epsilon}$. Then for $n, m > N$,

$$
d(x_n, x_m) = d(n, m) = \left| \frac{1}{n} - \frac{1}{m} \right| < \frac{1}{m} + \frac{1}{n} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
$$

Thus, $\{x_n\}$ is Cauchy. But $\forall k \in \mathbb{N}$, $d(x_n, k) \to \frac{1}{k}$ as $n \to \infty$. Therefore, the sequence ${x_n} = n$ is Cauchy but not convergent. Hence, (N, d) is not complete.

Suppose $f: \mathbb{N}^* \to \mathbb{N}^*$ is continuous. Then for every open set *U* in $\mathbb{N}^*, f^{-1}(U)$ is open in \mathbb{N}^* . Let $f(\infty) = x$. Then for all open sets $S \subseteq \mathbb{N}^*$ not containing $x, f^{-1}(S)$ does not contain ∞ and hence is open. If $f^{-1}(x)$ contains ∞ , then for it to be open, it should contain all $n \geq N$ for some $N \in \mathbb{N}^*$; thus $f(n) = x \ \forall \ n \geq N$. Therefore, f is continuous if and only if $\exists N \in \mathbb{N}$ such that $f(n) = f(\infty) \ \forall n \geq N$. ■

Solution 7:

Given $g \in C[0,1]$. The map $I: C[0,1] \to \mathbb{R}$ is defined by

$$
I(f) = \int_0^1 f(x)g(x)dx.
$$

We shall prove that *I* is in fact uniformly continuous and hence continuous. Let $\epsilon > 0$ be given. Let $\int_0^1 |g(x)| dx = k$. For $f_1, f_2 \in C[0, 1]$, if $||f_1 - f_2||_{\infty} < \frac{\epsilon}{k}$ $\frac{\epsilon}{k}$, then we can choose $\delta = \frac{\epsilon}{k}$ $\frac{\epsilon}{k}$ such that the following holds:

$$
|f_1(x) - f_2(x)| < \delta \implies |I(f_1) - I(f_2)| < \epsilon.
$$

We prove this as follows:

$$
|I(f_1) - I(f_2)| = \left| \int_0^1 f_1(x)g(x)dx - \int_0^1 f_2(x)g(x)dx \right| dx
$$

\n
$$
= \left| \int_0^1 (f_1(x) - f_2(x))g(x) \right| dx
$$

\n
$$
\leq \int_0^1 |(f_1(x) - f_2(x))g(x)|dx
$$

\n
$$
= \int_0^1 |f_1(x) - f_2(x)| \cdot |g(x)|dx
$$

\n
$$
< \int_0^1 \frac{\epsilon}{k} \cdot k dx = \epsilon.
$$

Thus, *I* is uniformly continuous and hence continuous.

Solution 8:

Given $g \in C[0,1]$. Let $I_x(f) = \int_0^x f(t)g(t)dt$. We need to show that the set $S = \{f \in$ $C[0,1] | I_x(f) \leq x$ is closed with respect to the $|| \cdot ||_{\infty}$ norm. We want to show that *S* is closed. It suffices to prove that $\overline{S} = C[0,1] \setminus S$ is open in $C[0,1]$. Consider a function *F* in \overline{S} . Then, $\exists y \in [0,1]$ such that $I_y(F) > y$. Let $\int_0^y F(t)dt = k$. Choose $\epsilon < \frac{1}{k}(I_y(F) - y)$. Then if $||F - F'||_{\infty} < \epsilon$, i.e., $F'(x) > F(x) - \epsilon \ \forall \ x \in [0, 1]$, we have,

$$
I_y(F') > \int_0^y (F(t) - \epsilon)g(t)dt
$$

= $I_y(F) - \epsilon \int_0^y g(t)dt$
> $I_y(F) - \frac{1}{k}(I_y(F) - y)k$
= $I_y(F) - I_y(F) + y$
= y .

Thus, $I_y(F') = \int_0^y F'(t)g(t)dt > y$ and hence, $B_{\epsilon}(F(x)) \subseteq \overline{S}$. Therefore, \overline{S} is open in $C[0, 1]$ and hence *S* is closed in [0, 1].

Solution 9:

Since \overline{A} is closed, so \overline{A}^c is open. Therefore,

$$
A \subseteq \overline{A} \implies A^c \supseteq (\overline{A})^c \implies \text{Int}(A^c) \supseteq (\overline{A})^c.
$$

Also, since Int(A^c) is open, so $(\text{Int}(A^c))^c$ is closed. Therefore,

 $\text{Int}(A^c) \subseteq A^c \implies (\text{Int}(A^c))^c \supseteq A \implies (\text{Int}(A^c))^c \supseteq \overline{A} \implies \text{Int}(A^c) \subseteq (\overline{A})^c$.

Therefore, $Int(A^c) = (\overline{A})^c$. ■

Solution 10:

(i) *f* is continuously differentiable on R and $f_n(x) = n \left(f(x + \frac{1}{n}) \right)$ $\frac{1}{n}$) – $f(x)$). Now, f is also continuous and since $[a, b]$ is compact, so f is also uniformly continuous on [a, b]. Thus, given any $\epsilon > 0$, $\exists \delta > 0$ such that

$$
|x - y| < \delta \implies |f'(x) - f'(y)| < \epsilon. \tag{4}
$$

Let $\epsilon > 0$ be fixed, by Mean Value theorem,

$$
f_n(x) = f'(c_x) \text{ for some } c_x \in \left[x, x + \frac{1}{n}\right].
$$
 (5)

For $n > \frac{1}{\delta}$, $|x - c_x| < \frac{1}{n} < \delta$. Thus, substituting $y = c_x$ in equation [\(4\)](#page-7-0), we have $|f'(x) - f'(c_x)| = |f(c_x) - f'(x)| < \epsilon$. Now, using equation [\(5\)](#page-7-1), we have $|f_n(x) - f'(x)| < \epsilon \ \forall \ x \in [a, b].$ Therefore, we have showed that for any given $\epsilon > 0$, $\exists N = \frac{1}{\delta} > 0$ such that $|f_n(x) - f'(x)| < \epsilon \ \forall n \ge N$. Thus, f_n uniformly converges to f' on any finite interval $[a, b]$.

(ii) $A_n \in M_{n \times m}$ is a function from \mathbb{R}^m to \mathbb{R}^n . Given, $A_n \to A$ pointwise. Therefore, $A_n e_i \rightarrow A e_i$, i.e., the *i*th column of A_n converges to the *i*th column of $A \forall i$. Thus, given any $\epsilon > 0$, $\exists N > 0$ such that $||(A_n - A)e_i|| < \epsilon \ \forall n \ge N$ and $\forall i$. Therefore, $A \in M_{n \times m}$. Consider a compact subset $K \subseteq \mathbb{R}^m$ and a column vector $v =$ $\sqrt{ }$ $\overline{}$ *v*1 . . . *v^m* \setminus $\Big\} \in K \subseteq \mathbb{R}^m$. Then, $||(A_n - A)v|| =$ $\begin{array}{c} \hline \end{array}$ $\sum_{ }^{m}$ *i*=1 $v_i(A_n - A)e_i$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ $\leq \sum^{m}$ *i*=1 v_i || $(A_n - A)e_i$ || $\lt \left(\sum_{n=1}^{\infty} \right)$ *i*=1 *vi* \setminus *ϵ*

Consider the mapping $f: K \to \mathbb{R}^m$ such that $v =$ $\sqrt{ }$ $\left\lfloor \right\rfloor$ *v*1 . . . *v^m* \setminus $\mapsto \sum_{i=1}^{m} v_i$. Clearly,

f is continuous and since *K* is compact, it attains a maximum on *K*. Let the maximum value attained be *M*. Therefore, $||A_n - A||_{\infty} < M \in \mathbb{V}$ *n* $\geq N$. Also, for each *i*, $||(A_n - A)e_i|| < \frac{\epsilon}{h}$ $\frac{\epsilon}{M}$. Thus, given $\epsilon > 0$, we can choose $\delta = \frac{\epsilon}{M}$ $\frac{\epsilon}{M}$ such that $||A_n - A||_{\infty} < M \cdot \frac{\epsilon}{M} = \epsilon$. Therefore, $A_n \to A$ uniformly on compact subsets of \mathbb{R}^m .

(iii) *f* is a continuous function on [0, 1]. The function f_n on [0, 1] is defined by

$$
f_n(x) = f\left(\frac{k-1}{n}\right)
$$
, if $\frac{k-1}{n} \le x < \frac{k}{n}$, $k = 1, 2, ..., n$

and $f_n(1) = f(1)$. Since [0, 1] is compact, so f is also uniformly continuous on [0, 1]. Therefore, for any $\epsilon > 0$, $\exists \delta > 0$ such that

$$
|x - y| < \delta \implies |f(x) - f(y)| < \epsilon.
$$

Choose *n* such that $n > \frac{1}{\delta}$. If $\frac{k-1}{n} \leq x < \frac{k}{n}$, then by the choice of δ , we have $\left| x - \frac{k-1}{n} \right|$ *n* $\vert < \frac{1}{n} < \delta$. By uniform continuity, we have

$$
\left| x - \frac{k-1}{n} \right| < \delta \implies \left| f(x) - f\left(\frac{k-1}{n}\right) \right| < \epsilon \implies |f(x) - f_n(x)| < \epsilon
$$

 $∀ x ∈ [0,1)$ Also, for $x = 1$, $f_n(1) = f(1)$ and hence $|f_n(1) - f(1)| = 0 < \epsilon$. Therefore, given $\epsilon > 0$, $\exists N = \frac{1}{\delta} > 0$ such that $|f_n(x) - f(x)| < \epsilon \forall n > N$ and $x \in [0,1]$. Therefore, $f_n \to f$ as $n \to \infty$ uniformly on [0, 1].