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Solution 1:
Let d : X × X → [0, ∞) be a pseudo metric. Define x ∼ y if d(x, y) = 0. Let X̃ = X/ ∼
and define d̃ : X̃ × X̃ → [0, ∞) by d̃([x], [y]) = d(x, y). We check the properties of metric.

1. Proof that d̃([x], [y]) = 0 ⇐⇒ [x] = [y]
If d̃([x], [y]) = 0, then d(x, y) = 0, i.e., x ∼ y. Also, if [x] = [y], then x ∼ y, which
implies d(x, y) = 0 = d̃([x], [y]).

2. Proof that d̃([x], [y]) = d̃([y], [x])
Since d is a pseudo metric, so d̃([x], [y]) = d(x, y) = d(y, x) = d̃([y], [x]).

3. Proof that d̃([x], [y]) ≤ d̃([x], [z])d̃([z], [y])
Similar to the above, d̃([x], [y]) = d(x, y) ≤ d(x, z) + d(z, y) = d̃([x], [z])d̃([z], [y]).

Therefore, d̃ is a well-defined metric.
Let x ∈ A. Since A is open, there exists an open ball Br(x) ⊆ A for some r > 0.

Therefore, if y ∈ [x], then d(x, y) = 0 < r =⇒ y ∈ A, which implies [x] ⊆ A. Then,
A = ⋃

x∈A[x] is a union of equivalence classes.
Take any [x] ∈ π(A) then x ∈ A and there exists an open ball Br(x) ⊆ A for some

r > 0. Now if [y] ∈ Br([x]) in X̃, then d̃([x], [y]) < r. Therefore, d(x, y) < r =⇒ y ∈
Br(x) ⊂ A. Hence, π(A) is open in X̃. ■

Solution 2:
R∗ is the extended real number system [−∞, ∞]. Define f : R∗ → [−1, 1] by

f(x) = x

1 + |x|
∀ x ∈ (−∞, ∞), f(−∞) = −1, f(∞) = 1.

To show that f is an injection, we need to show that f(x1) = f(x2) =⇒ x1 = x2. We
have,

f(x1) = f(x2)

=⇒ x1

1 + |x1|
= x2

1 + |x2|
(1)

=⇒ x1 + x1|x2| = x2 + x2|x1|
=⇒ x1 − x2 = x2|x1| − x1|x2| (2)

From equation (1), we see that x1 and x2 must be of same sign or both 0. If x1 ≥ 0, x2 ≥ 0,
then x2|x1| − x1|x2| = x2x1 − x1x2 = 0. If x1 ≤ 0, x2 ≤ 0, then x2|x1| − x1|x2| =
x2(−x1) − x1(−x2) = 0. Thus x2|x1| − x1|x2| = 0, so equation (2) gives x1 = x2.
Therefore, f is an injection.

Now for y ∈ [0, 1), 1 − y > 0 and hence y
1−y

≥ 0; therefore,

f

(
y

1 − y

)
=

y
1−y

1 +
∣∣∣ y

1−y

∣∣∣ =
y

1−y

1 + y
1−y

=
y

1−y
1−y+y

1−y

=
y

1−y
1

1−y

= y

and for y ∈ (−1, 0), 1 + y > 0 and hence y
1+y

< 0; therefore,

f

(
y

1 + y

)
=

y
1+y

1 +
∣∣∣ y

1+y

∣∣∣ =
y

1+y

1 − y
1+y

=
y

1+y
1+y−y

1+y

=
y

1+y
1

1+y

= y.
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Also, f(∞) = 1 and f(−∞) = −1. Therefore, f is also a surjection. Hence, f is a
bijection.

To show that f is non-decreasing, we need to show that x2 ≥ x1 =⇒ f(x2) ≥ f(x1).
We have,

f(x2) − f(x1) ≥ x2

1 + |x2|
− x1

1 + |x1|
= (x2 − x1) + (x2|x1| − x1|x2|)

(1 + |x1|)(1 + |x2|)
(3)

If x2 ≥ x1 ≥ 0, then x2|x1| − x1|x2| = x2x1 − x1x2 = 0. If x2 ≥ 0 ≥ x1, then x2|x1| −
x1|x2| = x2(−x1) − x1x2 = −2x1x2 ≥ 0. If 0 ≥ x2 ≥ x1, then x2|x1| − x1|x2| = x2(−x1) −
x1(−x2) = 0. Thus equation (3) implies that f(x2) − f(x1) ≥ 0 ⇐⇒ f(x2) ≥ f(x1).
Therefore, f is non-decreasing.

We check that d is a metric, as follows:

1. Proof that d(x, y) = 0 ⇐⇒ x = y
d(x, y) = 0 ⇐⇒ |f(x) − f(y)| = 0 ⇐⇒ f(x) = f(y) ⇐⇒ x = y, since f is an
injection.

2. Proof that d(x, y) = d(y, x)
d(x, y) = |f(x) − f(y)| = |f(y) − f(x)| = d(y, x).

3. Proof that d(x, y) ≤ d(x, z) + d(z, y)
d(x, y) = |f(x) − f(y)| ≤ |f(x) − f(z)| + |f(z) − f(y)| = d(x, z) + d(z, y).

Thus, d(x, y) = |f(x) − f(y)| is a metric.
Since f : R∗ → [−1, 1] defined by

f(x) =


x

1+|x| , if x ∈ (−∞, ∞)
−1, if x = −∞
1, if x = ∞

is a bijection, therefore f−1 : [−1, 1] → R∗ given by

f−1(y) =


y

1−|y| , if y ∈ (−1, 1)
−∞, if y = −1
∞, if y = 1

exists and it is clearly continuous. Since [−1, 1] is compact, so its continuous image
(R∗, d) is compact. The open subsets of (R∗, d) are union of open intervals of the form
(−∞, a) ∪ (b, c) ∪ (d, ∞). ■

Solution 3:
We prove that d is a metric as follows:

1. Proof that d({xn}, {yn}) = 0 ⇐⇒ {xn} = {yn}
d({xn}, {yn}) = 0 ⇐⇒ ∑∞

n=1
1

2n |xn − yn| = 0 ⇐⇒ xn = yn∀ n ⇐⇒ {xn} = {yn}.

2. Proof that d({xn}, {yn}) = d({yn}, {xn})
d({xn}, {yn}) = ∑∞

n=1
1

2n |xn − yn| = ∑∞
n=1

1
2n |yn − xn| = d({yn}, {xn}).
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3. Proof that d({xn}, {yn}) ≤ d({xn}, {zn}) + d({zn}, {yn})
We have, |xn − yn| ≤ |xn − zn| + |zn − yn|. Therefore,

d({xn}, {yn}) =
∞∑

n=1

1
2n

|xn − yn|

≤
∞∑

n=1

1
2n

|xn − zn| +
∞∑

n=1

1
2n

|zn − yn|

= d({xn}, {zn}) + d({zn}, {yn}).

Therefore, d is a metric.
Suppose {xn} ⊆ X converges to {xn}∞

n=1. Then ∀ ϵ > 0, there exists N > 0 such that∑∞
m=1

1
2k |xm,n − xm| < ϵ ∀ n ≥ N . This implies that |xm,n − xm| < ϵ for each m ∈ N.

Therefore, {xm,n}∞
m=1 converges to xm for each m ∈ N.

Conversely, if {xm,n}∞
m=1 converges to xm for each m ∈ N. Thus, for any ϵ > 0, ∃

ck ∈ N such that |xk,n − xk| < ϵ
2 ∀ n > ck. Choose N ∈ N such that 1

2N−2 < ϵ
2 . Then,

N∑
k=1

1
2k

|xk,n − xk| <
∞∑

k=1

1
2k

|xk,n − xk| <
∞∑

k=1

1
2k

· ϵ

2 = ϵ

2 .

Therefore,

∞∑
k=1

1
2k

|xk,n − xk| =
N∑

k=1

1
2k

|xk,n − xk| +
∞∑

k=N

1
2k

|xk,n − xk|

<
ϵ

2 +
∞∑

k=N

1
2k−1

= ϵ

2 + 1
2N−2

<
ϵ

2 + ϵ

2 = ϵ

Thus, {xn} converges to {xn}∞
n=1.

Consider an open ball Br(xn) = {∑∞
n=1

1
2n |xn − yn| < r} in X. If we take {xn} to be

a sequence of rationals such that for some N ∈ N, xn = 0 for all n > N . This sequence is
dense in X. Thus, the set of open balls around points of this sequence, i.e., {Br({xn})}
form a countable basis of X. ■

Solution 4:
Given that X and Y are metric spaces and Y is complete. S ⊆ X is dense and f : S → Y
is uniformly continuous. Define the extension f̃ : X → Y by f̃ |S = f and for x ∈ X \ S,
f̃(x) = lim f(sn) where {sn} is any sequence of points in S with sn → x (such a sequence
exists as S is dense in X).

Claim: {f(sn)} is Cauchy.
Proof: Let ϵ > 0. Since f is uniformly continuous, so ∃ δ > 0 such that

dX(a, b) < δ =⇒ dY (f(a), f(b)) < ϵ.
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Now since sn → x, so {sn} is Cauchy and hence ∃ N ∈ N such that dX(sn, sm) < δ ∀
n, m ≥ N . By uniform continuity, this implies dY (f(sn), f(sm)) < ϵ ∀ n, m ≥ N . There-
fore, {f(sn}) is Cauchy.

Since Y is complete, so {f(sn)} converges. Now we prove that f̃ is well-defined, i.e.,
if sn → x and s′

n → x, then lim f(sn) = lim f(s′
n). Let {s′′

n} = {s1, s′
1, s2, s′

2, . . . }. Let
ϵ > 0 be given. Then ∃ N1, N2 > 0 such that dX(sn, x) < ϵ ∀ n ≥ N1 and dX(s′

n, x) < ϵ
∀ n ≥ N2. Let N = max{N1, N2}. Then for n ≥ 2N , ⌈n

2 ⌉ ≥ N = max{N1, N2}, so if n is
even, then dX(s′′

n, x) = dX(s′
n
2
, x) < ϵ and if n is odd, then dX(s′′

n, x) = dX(sn+1
2

, x) < ϵ.
Thus, s′′

n → x. Thus, lim f(s′′
n) exists and since {f(sn)} and {f(s′

n)} are subsequences of
{f(s′′

n)}, so lim f(sn) = lim f(s′′
n) = lim f(s′

n).
Now we prove that f̃ is continuous on X \ S. (f̃ is continuous on S as f̃ |S = f and

f : S → Y is uniformly continuous, hence continuous.) Let ϵ > 0. Since f is uniformly
continuous, ∃ δ > 0 such that

dX(a, b) < δ =⇒ dY (f(a), f(b)) <
ϵ

3 .

Let x, y ∈ X \ S with dX(x, y) < δ
3 . Since S is dense in X, ∃ sequences {xn} and {yn} in

S with xn → x and yn → y. Thus, ∃ N1 ∈ N such that dX(xn, x) < δ
3 and dX(yn, y) < δ

3
∀ n ≥ N1. Thus, for n ≥ N1,

dX(xn, yn) ≤ dX(xn, x) + dX(x, y) + dX(y, yn) <
δ

3 + δ

3 + δ

3 = δ.

Therefore, by uniform continuity of f , dY (f(xn), f(yn)) < ϵ
3 . Also, since f(xn) → f̃(x)

and f(yn) → f̃(y), so ∃ N2 ∈ N such that dY (f(xn), f̃(x)) < ϵ
3 and dY (f(yn), f̃(y)) < ϵ

3
∀ n ≥ N2. Since f̃ |S = f and {xn}, {yn} are sequences in S, so f̃(xn) = f(xn) and
f̃(yn) = f(yn). Thus, for n ≥ max{N1, N2},

dY (f̃(x), f̃(y)) ≤ dY (f̃(x), f̃(xn)) + dY (f̃(xn), f̃(yn)) + dY (f̃(yn), f̃(y)) <
ϵ

3 + ϵ

3 + ϵ

3 = ϵ.

Therefore, f̃ is continuous on X.
Now we just have to prove that f̃ is unique. Let f̃ ′ be another continuous extension

of f on X. Then for x ∈ X \ S, let {sn} ⊆ S such that sn → x. Then since f̃ ′|S = f , so
f̃ ′(x) = lim f̃ ′(sn) = lim f(xn) = f̃(x).

Thus, f̃ is unique. ■

Solution 5:
Given, A, B ⊂ Rn. Define A + B := {a + b | a ∈ A, b ∈ B}.

We shall prove that if A and B are open, then A + B is open. Let c ∈ A + B, so
c = a + b for some a ∈ A and b ∈ B. Since A and B are open, so ∃ ϵ1, ϵ2 > 0 such that
Bϵ1(a) ⊆ A and Bϵ2(b) ⊆ B. Let ϵ = min{ϵ1, ϵ2}. Now let x ∈ Bϵ(c) be arbitrary. Then,

||c − x|| = ||(a + b) − x|| < ϵ =⇒ ||a − (x − b)|| < ϵ ≤ ϵ1.

Therefore, x − b ∈ A and hence, x = (x − b) + b ∈ A + B. Thus, Bϵ(c) ⊆ A + B and
hence, A + B is open.

If A and B are closed, then A + B is not necessarily closed. Consider A = N and
B =

{
−n + 1

n2 | n ∈ N
}
. Then A + B = { 1

n2 | n ∈ N}. The sequence { 1
n2 } converges to

0, so 0 is a limit point of A + B. But 0 ̸∈ A + B. Thus, A + B does not contain all its
limit points and hence A + B is not closed. ■

5



Solution 6:
We show that d is a metric as follows:

1. Proof that d(m, n) = 0 ⇐⇒ m = n

d(m, n) = 0 ⇐⇒
∣∣∣ 1

m
− 1

n

∣∣∣ = 0 ⇐⇒ 1
m

= 1
n

⇐⇒ m = n.

2. Proof that d(m, n) = d(n, m)
d(m, n) =

∣∣∣ 1
m

− 1
n

∣∣∣ =
∣∣∣ 1

n
− 1

m

∣∣∣ = d(n, m).

3. Proof that d(m, n) ≤ d(m, k) + d(k, n)
d(m, n) =

∣∣∣ 1
m

− 1
n

∣∣∣ ≤
∣∣∣ 1

m
− 1

k

∣∣∣+ ∣∣∣ 1
k

− 1
n

∣∣∣ = d(m, k) + d(k, n).

Therefore, d is a metric.
Consider S ⊆ N∗ = N ∪ {∞}.

Claim: If ∞ ̸∈ S, then S is open.
Proof: Let x ∈ S. Then for n > x,

d(x, n) =
∣∣∣∣1x − 1

n

∣∣∣∣ = 1
x

− 1
n

≥ 1
x

− 1
x + 1

and for n < x,
d(x, n) =

∣∣∣∣1x − 1
n

∣∣∣∣ = 1
n

− 1
x

≤ 1
x − 1 − 1

x
.

Therefore, for r < 1
x−1 − 1

x
, Br(x) = ϕ ⊆ S, and hence S is open.

If ∞ ∈ S, then if ∞ is an interior point of S, ∃ an open ball Br(∞) ⊆ S for some
r > 0. Now for any N ∈ Br(∞),

d(N, ∞) =
∣∣∣∣ 1
N

− 1
∞

∣∣∣∣ < r =⇒ 1
N

< r =⇒ 1
n

< r ∀ n ≥ N.

Thus, for ∞ to be an interior point of S, ∃ N ∈ N such that n ≥ N =⇒ n ∈ S. Thus,
open sets of N∗ are (all sets not containing ∞) ∪ (sets that contain all n ≥ N for some
N ∈ N∗).

N, with respect to the restricted metric is not complete. Consider the sequence {xn} =
{1, 2, . . . } given by xn = n. Now for a given ϵ > 0, let N > 2

ϵ
. Then for n, m > N ,

d(xn, xm) = d(n, m) =
∣∣∣∣ 1n − 1

m

∣∣∣∣ <
1
m

+ 1
n

<
ϵ

2 + ϵ

2 = ϵ.

Thus, {xn} is Cauchy. But ∀ k ∈ N, d(xn, k) → 1
k

as n → ∞. Therefore, the sequence
{xn} = n is Cauchy but not convergent. Hence, (N, d) is not complete.

Suppose f : N∗ → N∗ is continuous. Then for every open set U in N∗, f−1(U) is open
in N∗. Let f(∞) = x. Then for all open sets S ⊆ N∗ not containing x, f−1(S) does not
contain ∞ and hence is open. If f−1(x) contains ∞, then for it to be open, it should
contain all n ≥ N for some N ∈ N∗; thus f(n) = x ∀ n ≥ N . Therefore, f is continuous
if and only if ∃ N ∈ N such that f(n) = f(∞) ∀ n ≥ N . ■
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Solution 7:
Given g ∈ C[0, 1]. The map I : C[0, 1] → R is defined by

I(f) =
∫ 1

0
f(x)g(x)dx.

We shall prove that I is in fact uniformly continuous and hence continuous. Let ϵ > 0 be
given. Let

∫ 1
0 |g(x)|dx = k. For f1, f2 ∈ C[0, 1], if ||f1 − f2||∞ < ϵ

k
, then we can choose

δ = ϵ
k

such that the following holds:

|f1(x) − f2(x)| < δ =⇒ |I(f1) − I(f2)| < ϵ.

We prove this as follows:

|I(f1) − I(f2)| =
∣∣∣∣∫ 1

0
f1(x)g(x)dx −

∫ 1

0
f2(x)g(x)dx

∣∣∣∣ dx

=
∣∣∣∣∫ 1

0
(f1(x) − f2(x))g(x)

∣∣∣∣ dx

≤
∫ 1

0
|(f1(x) − f2(x))g(x)|dx

=
∫ 1

0
|f1(x) − f2(x)| · |g(x)|dx

<
∫ 1

0

ϵ

k
· kdx = ϵ.

Thus, I is uniformly continuous and hence continuous. ■

Solution 8:
Given g ∈ C[0, 1]. Let Ix(f) =

∫ x
0 f(t)g(t)dt. We need to show that the set S = {f ∈

C[0, 1] | Ix(f) ≤ x} is closed with respect to the || · ||∞ norm. We want to show that S is
closed. It suffices to prove that S = C[0, 1] \ S is open in C[0, 1]. Consider a function F
in S. Then, ∃ y ∈ [0, 1] such that Iy(F ) > y. Let

∫ y
0 F (t)dt = k. Choose ϵ < 1

k
(Iy(F )−y).

Then if ||F − F ′||∞ < ϵ, i.e., F ′(x) > F (x) − ϵ ∀ x ∈ [0, 1], we have,

Iy(F ′) >
∫ y

0
(F (t) − ϵ)g(t)dt

= Iy(F ) − ϵ
∫ y

0
g(t)dt

> Iy(F ) − 1
k

(Iy(F ) − y)k

= Iy(F ) − Iy(F ) + y

= y.

Thus, Iy(F ′) =
∫ y

0 F ′(t)g(t)dt > y and hence, Bϵ(F (x)) ⊆ S. Therefore, S is open in
C[0, 1] and hence S is closed in [0, 1]. ■

Solution 9:
Since A is closed, so A

c is open. Therefore,

A ⊆ A =⇒ Ac ⊇ (A)c =⇒ Int(Ac) ⊇ (A)c.
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Also, since Int(Ac) is open, so (Int(Ac))c is closed. Therefore,

Int(Ac) ⊆ Ac =⇒ (Int(Ac))c ⊇ A =⇒ (Int(Ac))c ⊇ A =⇒ Int(Ac) ⊆ (A)c.

Therefore, Int(Ac) = (A)c. ■

Solution 10:
(i) f is continuously differentiable on R and fn(x) = n

(
f(x + 1

n
) − f(x)

)
. Now, f is

also continuous and since [a, b] is compact, so f is also uniformly continuous on
[a, b]. Thus, given any ϵ > 0, ∃ δ > 0 such that

|x − y| < δ =⇒ |f ′(x) − f ′(y)| < ϵ. (4)

Let ϵ > 0 be fixed, by Mean Value theorem,

fn(x) = f ′(cx) for some cx ∈
[
x, x + 1

n

]
. (5)

For n > 1
δ
, |x − cx| < 1

n
< δ. Thus, substituting y = cx in equation (4), we

have |f ′(x) − f ′(cx)| = |f(cx) − f ′(x)| < ϵ. Now, using equation (5), we have
|fn(x) − f ′(x)| < ϵ ∀ x ∈ [a, b]. Therefore, we have showed that for any given ϵ > 0,
∃ N = 1

δ
> 0 such that |fn(x) − f ′(x)| < ϵ ∀ n ≥ N . Thus, fn uniformly converges

to f ′ on any finite interval [a, b].

(ii) An ∈ Mn×m is a function from Rm to Rn. Given, An → A pointwise. Therefore,
Anei → Aei, i.e., the ith column of An converges to the ith column of A ∀ i.
Thus, given any ϵ > 0, ∃ N > 0 such that ||(An − A)ei|| < ϵ ∀ n ≥ N and ∀ i.
Therefore, A ∈ Mn×m. Consider a compact subset K ⊆ Rm and a column vector

v =


v1
...

vm

 ∈ K ⊆ Rm. Then,

||(An − A)v|| =
∣∣∣∣∣
∣∣∣∣∣

m∑
i=1

vi(An − A)ei

∣∣∣∣∣
∣∣∣∣∣ ≤

m∑
i=1

vi||(An − A)ei|| <

(
m∑

i=1
vi

)
ϵ

Consider the mapping f : K → Rm such that v =


v1
...

vm

 7→ ∑m
i=1 vi. Clearly,

f is continuous and since K is compact, it attains a maximum on K. Let the
maximum value attained be M . Therefore, ||An − A||∞ < Mϵ ∀ n ≥ N . Also, for
each i, ||(An − A)ei|| < ϵ

M
. Thus, given ϵ > 0, we can choose δ = ϵ

M
such that

||An −A||∞ < M · ϵ
M

= ϵ. Therefore, An → A uniformly on compact subsets of Rm.

(iii) f is a continuous function on [0, 1]. The function fn on [0, 1] is defined by

fn(x) = f

(
k − 1

n

)
, if k − 1

n
≤ x <

k

n
, k = 1, 2, . . . , n

and fn(1) = f(1). Since [0, 1] is compact, so f is also uniformly continuous on [0, 1].
Therefore, for any ϵ > 0, ∃ δ > 0 such that

|x − y| < δ =⇒ |f(x) − f(y)| < ϵ.
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Choose n such that n > 1
δ
. If k−1

n
≤ x < k

n
, then by the choice of δ, we have∣∣∣x − k−1

n

∣∣∣ < 1
n

< δ. By uniform continuity, we have
∣∣∣∣∣x − k − 1

n

∣∣∣∣∣ < δ =⇒
∣∣∣∣∣f(x) − f

(
k − 1

n

)∣∣∣∣∣ < ϵ =⇒ |f(x) − fn(x)| < ϵ

∀ x ∈ [0, 1) Also, for x = 1, fn(1) = f(1) and hence |fn(1) − f(1)| = 0 < ϵ.
Therefore, given ϵ > 0, ∃ N = 1

δ
> 0 such that |fn(x) − f(x)| < ϵ ∀ n > N and

x ∈ [0, 1]. Therefore, fn → f as n → ∞ uniformly on [0, 1]. ■
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