Analysis 2 - Quiz 2

Duration: 1 hour

Maximum Marks: $4 \times 10 = 40$

- 1. Let A and B be dense subsets of a metric space X.
 - (a) Is $A \cap B$ necessarily dense?
 - (b) What if in addition A and B are open?
- 2. Let (X,d) be a metric space and $f\colon X\to\mathbb{R}$ a continuous function. Define the graph of f as

$$\Gamma := \{(x, f(x)) \colon x \in X\} \subseteq X \times \mathbb{R}.$$

Show that Γ is closed in $X \times \mathbb{R}$.

- 3. Define $f_n\colon (0,1)\to \mathbb{R}$ by $f_n(x)=\frac{1}{nx+1}.$ Show that the sequence $\{f_n(x)\}_{n\geq 1}$ converges pointwise but not uniformly over (0,1).
- 4. Let $f_n: [0,1] \to \mathbb{R}, n \ge 1$, be a sequence of functions converging uniformly to $f: [0,1] \to \mathbb{R}$. Prove or disprove: f has finitely many discontinuities if f_n has finitely many discontinuities for each n.

