

ANALYSIS 2 - QUIZ 1

September 6, 2023

This quiz has two questions, and will be for 30 minutes.

Total Points: 30

Maximum Points: 20

1. (15 points) Recall C[0,1] to be the set of continuous functions $f:[0,1] \to \mathbb{R}$. For $\phi \in C[0,1]$, define the function $\rho_{\phi}: C[0,1] \times C[0,1] \to \mathbb{R}$ as below:

$$\rho_{\phi}(f,g) = \int_{0}^{1} |f(x) - g(x)|\phi(x)dx \tag{1}$$

- (a) (5 points) Show that ρ_{ϕ} is a metric if $\phi(x) > 0$ for all $x \in [0, 1]$.
- (b) (6 points) Suppose now that ρ_{ϕ} is a metric for some ϕ . Show there exists no interval $[a, b] \subseteq [0, 1]$ such that $\phi(x) \leq 0$ for all $x \in [a, b]$. Hint: Suppose ρ_{ϕ} is a metric for some ϕ which is non-positive in an interval in [0, 1], and lead this to a contradiction.
- (c) (4 points) Show ρ_{ϕ} and ρ_{ϕ_0} are equivalent metrics if $\phi(x) > 0$ for all $x \in [0, 1]$, with $\phi_0(x) = 1$ for all $x \in [0, 1]$.
- 2. (15 points) Let d be a metric on a set X. Assume that it satisfies the *ultrametric* inequality:

$$d(x,z) \le \max\{d(x,y), d(y,z)\}\tag{2}$$

One example of a ultrametric space is the rationals \mathbb{Q} equipped with the p-adic metric. Prove the following statements about ultrametric spaces:

- (a) (5 points) Every triple of points forms an isosceles triangle. In other words, equality holds in inequality (2) whenever $d(x,y) \neq d(y,z)$.
- (b) (5 points) Any ball in (X, d) is both closed and open.
- (c) (5 points) Every point in a ball is the centre of the ball. In other words, for all $y \in X$, $\epsilon > 0$ and $x \in B(y, \epsilon)$, $B(x, \epsilon) = B(y, \epsilon)$.

All The Best!

