CHENNAI MATHEMATICAL INSTITUTE

Analyisis- 2, 2023

Assignment 2

1. Let $f, g: [0, 1] \mapsto \mathbb{R}$ be continuous functions satisfying

$$\int_0^1 f(t)t^n dt = \int_0^1 g(t)t^n dt, \quad \forall \text{ integers } n \ge 0.$$

Show that f = g.

- 2. Let X be a connected metric space. $f: X \mapsto \mathbb{R}$ be a function satisfying, for all $x \in X$ there exists a open set $U_x \ni x$ such that f is constant on U_x . Show that f is constant on X.
- 3. Is the set $\{z : z = \exp(i \sin t), t \in \mathbb{R}\} \subseteq \mathbb{C}$. connected? Prove your answer.
- 4. Let \mathcal{B} be the collection of continuous functions on \mathbb{R} which are eventually constant, that is there exists a M > 0 such that f(x) is constant on the set $\{x; |x| > M\}$. Verify that \mathcal{B} is a an algebra containing constants and separates points of \mathbb{R} . But show that there are continuous functions which can not be approximated uniformly by functions in \mathcal{B} . Does this contradict Stone-Weierstrass theorem. Explain your answer.
- 5. Let $\mathcal{F} \subseteq C([0,1])$ be a family such that
 - (i) f'(t) exists for all $t \in (0, 1)$ and $f \in \mathcal{F}$,
 - (ii) $\sup_{f \in \mathcal{F}} |f(0)| < \infty$,
 - (iii) $\sup_{t \in (0,1), f \in \mathcal{F}} |f'(t)| < \infty.$

Show that the closure of \mathcal{F} is compact.

6. Show that

$$\frac{(3x^2 - \pi^2)}{12} = \sum_{n=1}^{\infty} (-1)^n n^{-2} \cos nx$$

for all $x \in [-\pi, \pi]$.