CHENNAI MATHEMATICAL INSTITUTE

Analyisis- 2, 2023

Assignment 1

- 1. Let $d: X \times X \mapsto [0, \infty)$ be a pseudo metric. Define $x \sim y$ if d(x, y) = 0. Let $\tilde{X} = X/\sim$ and define $\tilde{d}: \tilde{X} \times \tilde{X} \mapsto [0, \infty)$ by d([x], [y]) = d(x, y). Show that \tilde{d} is a well-defined metric. Prove that a open subset A of (X, d) (defined through the pseudo metric in a similar way to metric) is a union of equivalence classes and $\pi(A)$ is open in \tilde{X} , where $\pi: X \mapsto \tilde{X}$ is defined by $\pi(x) = [x]$.
- 2. Let \mathbb{R}^* be the extended real number system $[-\infty,\infty]$. Define $f:\mathbb{R}^*\mapsto [-1,1]$ by

$$f(x) = \frac{x}{1+|x|}$$
 $\forall x \in (-\infty, \infty), f(-\infty) = -1, f(\infty) = 1.$

Show that f is a bijection and non-decreasing. Prove that d(x, y) = |f(x) - f(y)| is a metric. Describe the open subsets of (\mathbb{R}^*, d) . Is it compact?

- 3. Let $X = \{\{x_n\}_{n=1}^{\infty} : 0 \le x_n \le 1, \forall n \in \mathbb{N}\}$. Define $d(\{x_n\}, \{y_n\}) = \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n y_n|$. Show that d is metric. Show that a sequence $\{\overline{x}_n\} \subseteq X$, with $\overline{x}_n = \{x_{m,n}\}_{m=1}^{\infty}$ converges if and only if $\{x_{m,n}\}_{n=1}^{\infty}$ converges for each $m \in \mathbb{N}$. Describe the open subsets of X.
- 4. Let X, Y be metric spaces. Let $S \subseteq X$ be dense and $f : S \mapsto Y$ be uniformly continuous. Show that f can be extended uniquely as a continuous function to $X \mapsto Y$.
- 5. Let $A, B \subset \mathbb{R}^n$ and define

$$A + B = \{a + b; a \in A, b \in B\}.$$

If A and B are open is A + B open? If A and B are closed is A + B closed?

6. Let $\mathbb{N}^* = \mathbb{N} \cup \{\infty\}$. Assume $\frac{1}{\infty} = 0$. Define

$$d(m,n) = |\frac{1}{m} - \frac{1}{n}|.$$

Verify d is a metric. Describe the open sets. Is \mathbb{N} , with respect to the restricted metric, a complete metric space? When is a function $f : \mathbb{N}^* \to \mathbb{N}^*$ continuous?

7. Let $g \in C([0,1])$. Prove that the map $I : C([0,1]) \mapsto \mathbb{R}$ defined by

$$I(f) = \int_0^1 f(x)g(x)dx$$

is continuous.

- 8. Let $g \in C[0,1]$. Show that the set $\{f \in C[0,1] : \int_0^x f(t)g(t)dt \leq x\}$ is closed with respect to $\|\cdot\|_{\infty}$ norm.
- 9. Show that $Int(A^c) = (\overline{A})^c$.
- 10. (i) Let f be continuously differentiable on \mathbb{R} . Let $f_n(x) = n\left(f\left(x + \frac{1}{n}\right) f(x)\right)$. Prove that f_n converges uniformly to f' on any finite interval [a, b].

(ii) Let $A_n \in M_{n \times m}$ considered as function from \mathbb{R}^m to \mathbb{R}^n . Suppose A_n converges to A pointwise, Show that that $A \in M_{n \times m}$. Also show $A_n \to A$ uniformly on compact subsets of \mathbb{R}^m .

(iii) Let f be a continuous function on [0, 1]. Define a function f_n on [0, 1] by

$$f_n(x) = f\left(\frac{k-1}{n}\right), \text{ if } \frac{k-1}{n} \le x < \frac{k}{n} \ k = 1, 2, \dots n,$$

and $f_n(1) = f(1)$. Show that f_n converges uniformly to f as $n \to \infty$ on [0, 1].