Analysis I, Mid-Semester Exam

28 September, 2022

Total Points: 30, Duration: 2.5 hours

- N, Z, Q and R denote the sets of positive integers, integers, rational numbers and real numbers, respectively.
- When considered as a metric space, \mathbb{R} has the usual euclidean metric: d(x,y) = |x-y| for real numbers x,y.
- 1. (1+1+3+3 points) State true or false. You have to justify your answers for full marks.
 - (a) Let $\{x_n\}$ be a bounded sequence of real numbers such that $|x_n| \le |x_{n+1}|$ for all $n \ge 1$. Then $\{x_n\}$ is convergent.
 - (b) Let $\{x_n\}$ be a sequence of real numbers. Suppose that there exists a real number x such that $|x_{n+1}-x|<|x_n-x|$ for all $n\geqslant 1$. Then $\{x_n\}$ converges to x.
 - (c) The set $S = \{\frac{m}{100^n} | m, n \in \mathbb{Z}\}$ is dense in \mathbb{R} .
 - (d) Consider $\mathbb Q$ as a metric space with the usual euclidean metric $\mathbb Q$ and let $E \subset \mathbb Q$ be the subset defined as: $E = \{q \in \mathbb Q \mid 0 \leqslant q^2 < 5\}$. Then E is closed in $\mathbb Q$ and bounded, but not compact.
- 2. (4 points) Show that every open set in \mathbb{R} is a union of an at most countable collection of disjoint open intervals.

(Hint: Use the fact that \mathbb{Q} is dense in \mathbb{R} .)

- 3. (3+3 points) Determine if the following sets of real numbers are bounded above or bounded below and where applicable, find their supremum/infimum.
 - (a) $S_1 = \{ x \in \mathbb{R} \mid x \neq 0, x < \frac{1}{x} \}.$
 - (b) $S_2 = \{ x \in \mathbb{R} \mid x^2 \leq x + 1 \}.$
- 4. (4+4+4 points)
 - (a) Let $\{x_n\}$ be a bounded sequence of real numbers such that $x_n \le x_{n+1}$ for all $n \ge N_0$ for some positive integer N_0 . Show that $\{x_n\}$ is convergent.
 - (b) Define a sequence $\{a_n\}$ of real numbers as follows:

$$a_1 = 1$$
, and $a_{n+1} = \sqrt{2 + a_n}$, for $n \ge 1$.

Is the sequence $\{a_n\}$ convergent? If so, find its limit. (*Hint*: Show that $a_n < a_{n+1}$ for all $n \ge 1$.)

(c) Define a sequence $\{b_n\}$ of real numbers as follows [3]

$$b_n = \sum_{i=0}^{n-1} \frac{1}{i!}$$
, for $n \ge 1$.

Show that the sequence $\{b_n\}$ is convergent and that its limit belongs to the interval (2,3). (*Hint:* You may use the following formula, without proof: $1 + \frac{1}{2} + \ldots + \frac{1}{2^{n-1}} = \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}}$, for every $n \ge 1$.)

¹A subset $S \subset \mathbb{R}$ is *dense* in \mathbb{R} if every nonempty open interval (a,b) in \mathbb{R} contains an element of S.

 $^{^{2}}d(p,q) = |p-q|$ for $p,q \in \mathbb{Q}$.

 $^{^{3}}$ We set 0! = 1.