
ALGO Practice Problems | Set 8 November 27, 2023

• See previous practice problem sets for instructions.

• I repeat one very important instruction: You must explicitly state all non-

trivial assumptions that you make. When in doubt, over-communicate.

• Since the TAs are busy with their �nal exams, there will be no tutorial for this

problem set. Please feel free to approach me if you have questions.

1. Recall the problem of implementing a k-bit binary counter C[0 . . . (k − 1)] that we

discussed in class. We had|naturally|assumed that ipping a bit costs 1 unit of

time. In this question we look at a weighted version of this problem, where ipping

bit C[i] costs 2i steps. We start with the counter being all zeroes, and increment it n

times.

(a) What is the worst-case cost of an increment operation? What is an upper bound

on the worst-case cost of n increment operations?

(b) Use aggregate analysis to show that the amortized cost of an increment operation

is O(log2 n).

2. The array is a data structure which supports constant-time index-based insertion and

retrieval. But this speed comes at a cost: each array has a �xed size that is decided

when it is created, and the array cannot hold more than the pre-assigned maximum

number of elements. In contrast, a linked list can grow to accommodate as many ele-

ments as needed but retrieval takes linear time in the worst-case (and also on average).

It turns out that we can use arrays to implement a data structure that (i) can grow

to hold as many elements as needed, and (ii) allows for constant-time index-based

retrieval, and constant amortized cost of insertion.

The idea is as follows. We use a variable DynArray to hold the elements. We

assume that array indexing starts with 0. At any point of time, DynArray refers

to an underlying array. Let count denote the number of elements currently stored

in DynArray, and let size denote the maximum number of elements that can be

stored in DynArray. Thus DynArray[count− 1] stores the last element in the data

structure, and the data structure is full when count = size.

We initialize count and size to 0, and DynArray to NIL.

The Retrieve(i) function is implemented as you would expect: if i ≥ count then

return NIL, indicating that the element DynArray[i] doesn't exist. Otherwise, return

DynArray[i].

The Insert(x) function is implemented as follows:

Page 1 of 2

• If count = 0: Create an array A of size 1 and set DynArray = A. Set

DynArray[0] = x, count = 1, size = 1.

• Else:

– If count = size:

∗ Create an array A of size 2× size

∗ Copy over the contents of DynArray to A[0] . . . A[size− 1]

∗ Set DynArray = A, size = 2× size

– Set DynArray[count] = x, count = count+ 1

That is: when we run of space in the current array we create a new array with twice

the current size, copy over the existing array to the beginning of the new array, and

carry on with the new array.

Note that Retrieve() runs in constant worst-case time, since it consists of an indexed

array lookup and a couple of constant-time checks. But what is the cost of Insert()?

Suppose we start with an empty data structure, and call Insert() n times. What

would be the amortized cost of an Insert() operation in this sequence?

Assume that creating an array takes time linear in the size of the array, and access-

ing/writing an array element takes constant time. Ignore the other costs (such as

the cost for comparing two numbers) in the following analysis, since it is the array

operations that contribute most to the cost.

(a) What is the worst-case cost of a call to Insert()? What is an upper bound on

the worst-case cost of n calls to Insert()?

(b) Use aggregate analysis to show that a call to Insert() has constant amortized

cost.

(c) Use the accounting method to show that a call to Insert() has constant amortized

cost.

(d) Use the potential method to show that a call to Insert() has constant amortized

cost.

3. Let (G, s, t, c) be a ow network with integral capacities, let f be a feasible ow in this

network, and let Gf be the corresponding residual network. Prove that there exists a

feasible ow g in (G, s, t, c) with val(g) > val(f) if and only if there exists a ow h in

Gf such that val(h) = (val(g) − val(f)). Clearly state any properties of networks or

ows that we proved in class, if you use them in your proof.

Page 2 of 2

